Industrial Automation Headquarters Delta Electronics, Inc.
Taoyuan Technology Center
No.18, Xinglong Rd. Taoyua
Taoyuan C
TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia
Delta Electronics (Jiangsu) Ltd.
Wuijiang Plant 3
1688 Jiangxing
Wuijiang Economic Develo
Wujiang City, Jiang Su Province,
People's Ren
Wujang City, Jiang su Province,
Peopples Repulbic of China (Post code: 215200)
TEL: 86-512-5340-3008 / FAX: 86-769-6340-7290
Delta Greentech (China) Co., Ltd.
238 Min-Xia Road, Pudong District
ShangHai, P.R.C.
Post code : 201209
TEL: 86-21-58635678 / FAX: 86-21-58630003
Delta Electronics (Japan), Inc.
Tokyo Office
2-1-14 Minato-ku Shibadaimon,
Tokyo 105-0012, Japan
Delta Electronics (Korea), Inc.
1511, Byucksan Digital Valley 6-cha, Gasan-dong, TEL: 82-2-515-5303/ FAX: 82-2-515-5302

Delta Electronics Intl' (S) Pte Ltd 4 Kaki Bukit Ave 1, \#05-05, Singapore 417939
TEL: 65-6747-5155। FAX: 65-6744-9228
Delta Electronics (India) Pvt. Ltd.
Plot No 43 Sector 35, HSIIDC
Gurgaon, PIN 122001, Haryana, India
TEL- $91-124-4874900$ / FAX: $91-124-4874945$
Americas
Delta Product
Raleigh Office
Raleigh Office
P.O. Box 12173,5101 D
TEL: 1-919-767-3800 / FAX: 1-919-767-8080
Delta Greentech (Brasil) S.A
Sao Paulo Office
Rua ltapeva, $26-3^{\circ}$ andar Edificio Itapeva One-Bela Vista
$01332-000$-São Paul

Europe

Deltronics (The Netherlands) B.V.
Eindhoven Office
De Witbogt 20, 5652 AG Eindhoven, The Netherlands
TEL: $31-40-2592850$ / FAX: $31-40-2592851$

www.deltaww.com

Smarter. Greener. Together.
Delta Elevator Drive VFD-ED Series User Manual

Thank you for choosing DELTA's high-performance VFD-ED Series. The VFD-ED Series is manufactured with high-quality components and materials and incorporates the latest microprocessor technology available.

This manual is to be used for the installation, parameter setting, troubleshooting, and daily maintenance of the AC motor drive. To guarantee safe operation of the equipment, read the following safety guidelines before connecting power to the AC motor drive. Keep this operating manual at hand and distribute to all users for reference.

To ensure the safety of operators and equipment, only qualified personnel familiar with AC motor drive are to do installation, start-up and maintenance. Always read this manual thoroughly before using VFD-ED series AC Motor Drive, especially the WARNING, DANGER and CAUTION notes. Failure to comply may result in personal injury and equipment damage. If you have any question, please contact your dealer.

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

AC input power must be disconnected before any wiring to the AC motor drive is made.
2. A charge may still remain in the DC-link capacitors with hazardous voltages, even if the power has been turned off. To prevent personal injury, please ensure that power has turned off before opening the AC motor drive and wait ten minutes for the capacitors to discharge to safe voltage levels.
3. Never reassemble internal components or wiring.
4. The AC motor drive may be destroyed beyond repair if incorrect cables are connected to the input/output terminals. Never connect the AC motor drive output terminals U/T1, V/T2, and W/T3 directly to the AC mains circuit power supply.
5. Ground the VFD-ED using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed. Refer to the Basic Wiring Diagram.
6. VFD-ED series is used only to control variable speed of 3-phase induction motors, NOT for 1-phase motors or other purpose.
7. VFD-ED series shall NOT be used for life support equipment or any life safety situation.

WARNING!

1. DO NOT use Hi-pot test for internal components. The semi-conductor used in AC motor drive easily damage by high-voltage.
2. There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. To prevent damage to these components, do not touch these components or the circuit boards with metal objects or your bare hands.
3. Only qualified persons are allowed to install, wire and maintain AC motor drives.

CAUTION:

Some parameters settings can cause the motor to run immediately after applying power.
2. DO NOT install the AC motor drive in a place subjected to high temperature, direct sunlight, high humidity, excessive vibration, corrosive gases or liquids, or airborne dust or metallic particles.
3. Only use AC motor drives within specification. Failure to comply may result in fire, explosion or electric shock.
4. To prevent personal injury, please keep children and unqualified people away from the equipment.
5. When the motor cable between AC motor drive and motor is too long, the layer insulation of the motor may be damaged. Please use a frequency inverter duty motor or add an AC output reactor to prevent damage to the motor. Refer to appendix B Reactor for details.
6. The rated voltage for AC motor drive must be $\leq 240 \mathrm{~V}$ ($\leq 480 \mathrm{~V}$ for 460 V models) and the mains supply current capacity must be $\leq 5000 \mathrm{~A}$ RMS ($\leq 10000 \mathrm{~A}$ RMS for the $\geq 40 \mathrm{hp}$ (30kW) models)

Firmware version: 1.01

Chapter 1 Introduction

1-1 Receiving and Inspection

After receiving the AC motor drive, please check for the following:

1) Inspect the unit after unpacking to assure it was not damaged during shipment. Make sure that the part number printed on the package corresponds with the part number indicated on the nameplate.
2) Make sure that the voltage for the wiring lie within the range as indicated on the nameplate. Install the AC motor drive according to this manual.
3) Before applying the power, make sure that all the devices, including power, motor, control board and digital keypad, are connected correctly.
4) When wiring the AC motor drive, make sure that the wiring of input terminals "R/L1, S/L2, T/L3" and output terminals"U/T1, V/T2, W/T3" are correct to prevent drive damage.
5) When power is applied, select the language and set parameter groups via the digital keypad (KPED-LE01). When executing a trial run, begin with a low speed and then gradually increase the speed untill the desired speed is reached.

1-2 Nameplate Information

Using 15HP/11kW 230V, 3-Phase as an exemple.

AC Drive Model	MODEL	:VFD110ED23S
Input Voltage/Current	INPUT	:3PH 180-264V50/60Hz 47A
Output Voltage/Current \longrightarrow	OUTPUT	:3PH0-240V51.4A(LIFT DUTY) 45A(General) 11kW/15HP
Frequency Range	Freq. Range	:0-400Hz
Firmware Version	Version: 0.01	
Barcode \qquad Serial Number \qquad		110ED23SW14380001

1-3 Model Name

1-4 Serial Number

110ED23S W14380001

1-5 RFI Switch

The AC motor drive may emit the electrical noise. The RFI switch is used to suppress the interference (Radio Frequency Interference) on the power line. The RFI Switch of Frame C, D, E are at similar position (Frame B doesn't have a RFI Switch). Open the top cover to remove the RFI switch as shown in the imge below.

Frame E

Isolating main power from ground:
When the power distribution system of the Power Regenerative Unit is a floating ground system (IT) or an asymmetric ground system (TN), the RFI short-circuit cable must be cut off. Cutting off the short-circuit cable also cuts off the internal RFI capacitor (filter capacitor) between the system's frame and the central circuits to avoid damaging the central circuits and (according to IEC 61800-3) reduce the ground leakage current.

Important points regarding ground connection

\square To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, the Power Regenerative Unit must be properly grounded during installation.
∇ The diameter of the cables must meet the size specified by safety regulations.
\boxtimes The shielded cable must be connected to the ground of the Power Regenerative Unit to meet safety regulations.
\boxtimes The shielded cable can only be used as the ground for equipment when the aforementioned points are met.
\boxtimes When installing multiple sets of Power Regenerative Units, do not connect the grounds of the Power Regenerative Units in series. As shown below

Pay particular attention to the following points:
च After turning on the main power, do not cut the RFI short-circuit cable while the power is on.

- Make sure the main power is turned off before cutting the RFI short-circuit cable.
\square Cutting the RFI short-circuit cable will also cut off the conductivity of the capacitor. Gap discharge may occur once the transient voltage exceeds 1000 V .

If the RFI short-circuit cable is cut, there will no longer be reliable electrical isolation. In other words, all controlled input and outputs can only be seen as low-voltage terminals with basic electrical isolation. Also, when the internal RFI capacitor is cut off, the Power Regenerative Unit will no longer be electromagnetic compatible.
\square The RFI short-circuit cable may not be cut off if the main power is a grounded power system.
\square The RFI short-circuit cable may not be cut off while conducting high voltage tests. When conducting a high voltage test to the entire facility, the main power and the motor must be disconnected if leakage current is too high.

Floating Ground System(IT Systems)

A floating ground system is also called IT system, ungrounded system, or high impedance/resistance (greater than 30Ω) grounding system.
\boxtimes Disconnect the ground cable from the internal EMC filter.
\square In situations where EMC is required, check whether there is excess electromagnetic radiation affecting nearby low-voltage circuits. In some situations, the adapter and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase security.

■ Do not install an external RFI/EMC filter, the EMC filter will pass through a filter capacitor, thus connecting power input to ground. This is very dangerous and can easily damage the Power Regenerative Unit.

Asymmetric Ground System (Corner Grounded TN Systems)

Caution: Do not cut the RFI short-circuit cable while the input terminal of the Power Regenerative Unit carries power.
In the following four situations, the RFI short-circuit cable must be cut off. This is to prevent the system from grounding through the RFI capacitor, damaging the Power Regenerative Unit.

RFI short-circuit cable must be cut off

1. Grounding at a corner in a triangle configuration

2. Grounding at one end in a single-phase configuration

3. Grounding at a midpoint in a polygonal configuration

4. No stable neutral grounding in a three-phase autotransformer configuration

Use RFI short-circuit

Internal grounding through RFI capacitor, which reduces electromagnetic radiation. In a situation with higher requirements for electromagnetic compatibility, and using a symmetrical grounding power system, an EMC filter can be installed. For example, the diagram on the right is a symmetrical grounding power system.

1-6 Dimensions

Frame B
VFD022ED21S, VFD037ED21S,VFD040ED23S/43S;

SEE DETAIL B

DETAIL A
(MOUNTING HOLE) (MOUNTING HOLE)

DIMENSIONAL
UNIT:mm[inch]

FRAME	W	W1	H	H1	H2	D	D1*	S1
B	$\begin{aligned} & 193.55 \\ & {[7.60]} \\ & \hline 7 \end{aligned}$	$\begin{aligned} & 162.5 \\ & {[6.39]} \end{aligned}$	$\begin{aligned} & 260.0 \\ & {[10.22]} \end{aligned}$	$\begin{gathered} 247.0 \\ 9.711 \end{gathered}$	$\begin{aligned} & 230.0 \\ & {\left[\begin{array}{l} 2 \end{array}\right]} \end{aligned}$	$\begin{aligned} & 133.5 \\ & {[5.25]} \end{aligned}$	$\begin{gathered} 58.0 \\ {[2.28]} \end{gathered}$	${ }^{6.5}$

*D1: This dimension is for flange mounting application reference.

Frame C
VFD055ED23S/43S, VFD075ED23S/43S,VFD110ED23S/43S, VFD150ED43S, VFD185ED43S;

SEE DETAIL B

DIMENSIONAL
UNIT:mm[inch]

frame	W	W1	H	H1	H2	D	*	S1
C	${ }_{\substack{23,50 \\ 1925}}^{\substack{\text { a }}}$	${ }_{\substack{2040 \\ 1803}}^{\text {20, }}$	${ }_{\substack{350.0 \\[137]}}^{\substack{\text { a }}}$	${ }_{\substack{3370 \\[1327}}^{\substack{\text { a }}}$	${ }_{\substack{320}}^{150.0}$	${ }_{\text {l }}^{15.50}$	coid	

*D1: This dimension is for flange mounting application reference.

Frame D
VFD150ED23S, VFD185ED23S, VFD220ED23S/43S, VFD300ED43S;

SEE DETAIL B

DIMENSIONAL
UNIT:mm[inch]

FRAME	W	W1	H	H1	H2	D	D1*	S1
D	50	${ }_{\substack{226.0 \\ 18.00}}$	${ }_{\substack{403.8 \\[15.90]}}$	${ }_{\substack{384.0 \\[15.2]}}^{\substack{\text { a }}}$	${ }_{\substack{360.0 \\[14.17}}$	${ }^{8.0}$	${ }_{\substack{9.0 \\[3.0]}}$	${ }^{8.5}$

*D1: This dimension is for flange mounting application reference.

Frame E

VFD300ED23S, VFD370ED23S/43S, VFD450ED43S, VFD550ED43S, VFD750ED43S;

DIMENSIONAL
UNIT:mm[inch]

FRAME	W	W1	H	H1	H2	D	D1*	D2	S1	S2
E	$\begin{aligned} & 330.0 \\ & \text { 1120 } \end{aligned}$	$\begin{aligned} & 285.0 \\ & {[1122]} \end{aligned}$	$\begin{aligned} & 550.0 \\ & {[21.0} \end{aligned}$	$\begin{aligned} & 525.0 \\ & {[20.67]} \end{aligned}$	$\begin{aligned} & 492.0 .0 \\ & 1.97] \end{aligned}$	$\begin{aligned} & 273.4 \\ & {[10.76]} \end{aligned}$	$\begin{aligned} & 107.27 \\ & {[.22]} \end{aligned}$	$\begin{aligned} & 16.0 \\ & {[0.03]} \end{aligned}$	$\begin{aligned} & 11.0 \\ & {[0.43]} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 18.0 \\ & {[0.710} \end{aligned}$

*D1: This dimension is for flange mounting application reference.

Bulilt-in Digital Keypad
KPED-LE01

Chapter 2 Installation

2-1 Minimum Mounting Clearance and Installation

\square Note

- Prevent fiber particles, scraps of paper, shredded wood saw dust, metal particles, etc. from adhereing to the heat sink
■ Install the AC motor drive in a metal cabinet. When installing one drive below another one, use a metal separation between the AC motor drives to prevent mutual heating and to prevent the risk of fire accident.
■ Install the AC motor drive in Pollution Degree 2 environments only: normallyl only nonconductive pollution occurs and temporary conductivity caused by condensation is expected.
The image below is for reference only.

2-2 Minimum mounting clearance

Horsepower	Width	Height
	mm (inch)	mm (inch)
$3-5 \mathrm{HP}$	$50(2)$	$150(6)$
$7.5-20 \mathrm{HP}$	$75(3)$	$175(7)$
$25-30 \mathrm{HP}$	$75(3)$	$200(8)$

Frame	Capacity	Model No.
\mathbf{B}	$3.0-5.0 H P$	VFD022ED21S, VFD037ED21S,VFD040ED23S/43S
\mathbf{C}	$7.2-4 \mathrm{~kW})$	VFD055ED23S/43S, VFD075ED23S/43S,VFD110ED23S/43S,
$(5.5-11 \mathrm{~kW})$	VFDD150ED43S, VFD185ED43S	
\mathbf{D}	$20-40 \mathrm{HP}$	VFD150ED23S, VFD185ED23S, VFD220ED23S/43S
	$(15-30 \mathrm{~kW})$	VFD300ED43S
\mathbf{E}	$40-100 \mathrm{HP}$	VFD300ED23S, VFD370ED23S/43S, VFD450ED43S,
	$(30-75 \mathrm{~kW})$	VFD550ED43S, VFD750ED43S

(${ }^{\text {D }}$ NOTE

The minimum mounting clearances stated in the table above applies to AC motor drives frame B,C,D and E. A drive which fails to follow the minimum mounting clearances may cause the fan to malfunction and heat dissipation problem.

Model No.	Air flow rate for cooling						Power Dissipation AC motor drive		
	Flow Rate(cfm)			Flow Rate(m3/hr)			Power Dissipation		
	External	Internal	Total	External	Internal	Total	Loss External (Heat Sink)	Internal	Total
VFD022ED21S	13.7	-	13.7	23.3	-	23.3	60	36	96
VFD037ED21S	23.9	-	23.9	40.7	-	40.7	84	46	130
VFD040ED23S	23.9	-	23.9	40.7	-	40.7	133	49	182
VFD055ED23S	48.5	-	48.5	82.4	-	82.4	212	67	279
VFD075ED23S	48.5	-	48.5	82.4	-	82.4	292	86	379
VFD110ED23S	47.9	-	47.9	81.4	-	81.4	355	121	476
VFD150ED23S	64.6	-	64.6	109.8	-	109.8	490	161	651
VFD185ED23S	102.3	-	102.3	173.8	-	173.8	638	184	822
VFD220ED23S	102.8	-	102.8	174.7	-	174.7	723	217	939
VFD300ED23S	179	30	209	304	51	355	932	186	1118
VFD370ED23S	179	30	209	304	51	355	1112	222	1334
VFD040ED43S	13.7	-	13.7	23.3	-	23.3	123	42	165
VFD055ED43S	48.5	-	48.5	82.4	-	82.4	185	55	240
VFD075ED43S	48.5	-	48.5	82.4	-	82.4	249	71	320
VFD110ED43S	47.9	-	47.9	81.4	-	81.4	337	94	431

VFD150ED43S	46.1	-	46.1	78.4	-	78.4	302	123	425
VFD185ED43S	46.1	-	46.1	78.4	-	78.4	391	139	529
VFD220ED43S	102.8	-	102.8	174.7	-	174.7	642	141	783
VFD300ED43S	83.7	-	83.7	142.2	-	142.2	839	180	1019
VFD370ED43S	179	30	209	304	51	355	803	252	1055
VFD450ED43S	179	30	209	304	51	355	1014	270	1284
VFD550ED43S	179	30	209	304	51	355	1244	275	1519
VFD750ED43S	186	30	216	316	51	367	1541	338	1878

Dearating Capacity of Carrier Frequency (Fc):

Frame	B	C	D	E	E
Fc(kHz)	$2.2 \sim 4 \mathrm{~kW}$	$5.5 \sim 11 \mathrm{~kW}$	$15 \sim 22 \mathrm{~kW}$	$30 \sim 45 \mathrm{~kW}$	$55 \sim 75 \mathrm{~kW}$
0	100%	100%	100%	100%	100%
1	100%	100%	100%	100%	100%
2	100%	100%	100%	100%	100%
3	100%	100%	100%	100%	100%
4	100%	100%	100%	100%	100%
5	100%	100%	100%	100%	100%
6	100%	100%	100%	100%	100%
7	100%	100%	100%	90.73%	-
8	100%	100%	100%	82.20%	-
9	94.24%	100%	92.32%	74.31%	-
10	88.92%	100%	85.21%	-	-
11	82.54%	95.35%	78.63%	-	-
12	78.08%	91.02%	72.53%	-	-
13	73.95%	86.98%	66.87%	-	-
14	70.14%	84.14%	61.62%	-	-
15	66.61%	80.67%	56.74%	-	-

Derating Curve of Carrier Freuqncy (Fc):

lo derating curve

Ambient Temperature Derating Curve:
Temperature derating curve

Chapter 3 Wiring

After removing the front cover, examine if the power and control terminals are clearly noted. Read following precautions before wiring.

च Make sure that power is only applied to the R/L1, S/L2, T/L3 terminals. Failure to comply may result in damage to the equipments. The voltage and current should lie within the range as indicated on the nameplate (Chapter 1-1).
\square All the units must be grounded directly to a common ground terminal to prevent lightning strike or electric shock.
\square Make sure to fasten the screw of the main circuit terminals to prevent sparks which is made by the loose screws due to vibration

च It is crucial to turn off the AC motor drive power before any wiring installation are made. A charge may still remain in the DC bus capacitors with hazardous voltages even if the power has been turned off therefore it is suggested for users to measure the remaining voltage before wiring. For your personnel saftery, please do not perform any wiring before the voltage drops to a safe level < 25 Vdc. Wiring installation with remaninig voltage condition may caus sparks and short circuit.
च Only qualified personnel familiar with AC motor drives is allowed to perform installation, wiring and commissioning. Make sure the power is turned off before wiring to prevent electric shock.

च When wiring, please choose the wires with specification that complys with local regulation for your personnel safety.
\square Check following items after finishing the wiring:

1. Are all connections correct?
2. Any loosen wires?
3. Any short-circuits between the terminals or to ground?

3-1 Wiring

Figure 01
Switching bwtween two modes: $\operatorname{SINK}(N P N) /$ SOURCE(PNP)

(4) Source Mode with external power

3-2 System Wiring Diagram

Chapter 4 Main Circuit Terminal

5-1 Main Circuit Diagram

Terminal Symbol

Explanation of Terminal Function

EPS (+, -) Backup power/ Emergency power connection terminal.

R/L1, S/L2, T/L3	AC line input terminals 3-phase.
U/T1, V/T2, W/T3	AC drive output terminals for connecting 3-phase induction motor.
$+1,+2 / B 1$	Connections for DC reactor to improve the power factor. Remove the jumper before installing a DC reactor. (Frame E has a DC reactor built-in.).
$+2 / B 1$, B2	Connections for brake resistor (optional).
\doteq E	Earth connection, to comply with local regulations.

Main input power terminals:

$\square \quad$ Do not connect 3-phase model to one-phase power. R/L1, S/L2 and T/L3 has no phase-sequence requirement, it can be used upon random selection.
च A NFB must be installed between the 3-phase power input terminals and the main circuit terminals (R/L1, S/L2, T/L3). It is recommended to add a magnetic contactor (MC) to the power input wiring to cut off power quickly and reduce malfunction when activating the protection function of the AC motor drive. Both ends of the MC should have an R-C surge absorber.
$\square \quad$ Fasten the screws in the main circuit terminal to prevent sparks condition made by the loose screws due to vibration.
\square Use voltage and current within the specification in Chapter 8.
■ When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200 mA or above and not less than 0.1 -second operation time to avoid nuisance tripping. When choosing a GFCI designed for the AC motor drive, choose a current sensor with sensitivity of 30 mA or above.
$\boxtimes \quad$ Use the shield wire or tube for the power wiring and ground the two ends of the shield wire or tube.
\boxtimes Do NOT run/stop AC motor drives by turning the power ON/OFF. Run/stop AC motor drives by sending RUN/STOP command via control terminals or keypad. If you still need to run/stop AC motor drives by turning power ON/OFF, it is recommended to do so only ONCE per hour
Output terminals of the main circuit:
\square When it is necessary to install a filter at the output side of terminals U/T1, V/T2, W/T3 on the AC motor drive. Use inductance filter. Do not use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance).
\boxtimes DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals of AC motor drives.
\square Use well-insulated motors to prevent any electric leakage from motors.
Terminals [+1, +2] for connecting DC reactor. Terminals [+1, +2/B1] for connecting brake resistor.
$\square \quad$ These terminals are to connect to a DC reactor to improve the power factor and reduce harmonics. At the factory setting, a jumper is connected to these terminals.. Remove that jumper before connecting to a DC reactor.

च Models above 22kW don't have a built-in brake resistor. To improve resistance ability, connect an external, optional brake resistor
\boxtimes When not in use, leave terminals $+2 / \mathrm{B} 1,(-)$ open.
\boxtimes Short-circuiting [B2] or [-] to [+2/B1] will damage the motor drive. Do NOT do that.

4-1 Main Circuit Terminals Specifications
 FrameB

Main circuit terminals:
R/L1,S/L2,T/L3,U/T1,V/T2/,WT3,+(DC+),-(DC-),B1,B2, $\left.\frac{1}{\underline{玉}}\right)$

Models	Wire Gauge		 Torque (? 0\%)
	Max. Wire Gauge	Min. Wire Gauge	
VFD022ED21S	$\begin{aligned} & \text { 10AWG } \\ & {[5.3 \mathrm{~mm} 2]} \end{aligned}$	$\begin{aligned} & \text { 14AWG } \\ & \text { [2.1mm2] } \end{aligned}$	$\begin{gathered} \text { M4 } \\ 18 \mathrm{kgf}-\mathrm{cm} \\ (15.6 \mathrm{lbf}-\mathrm{in}) \\ (1.7 \mathrm{Nm}) \end{gathered}$
VFD040ED43S			
VFD037ED21S		$\begin{aligned} & \text { 12AWG } \\ & \text { 3.3mm2] } \end{aligned}$	
VFD040ED23S			

UL installations must use 600V, 75? wire. Use copper wire only.
NOTE:

1. Figure 1 shows the terminal specification.
2. Figure 2 shows the specification of
insulated heat shrink tubing that comply with UL (600V, YDPU2).

Figure 1

Figure 2

Frame C

UL installations must use 600V, 75? wire. Use copper wire only.
NOTE:

1. Figure 1 shows the terminal specification.
2. Figure 2 shows the specification of insulated heat shrink tubing that comply with UL (600V, YDPU2).

Figure 1

Figure 2

Frame D

Main circuit terminals: R/L1,S/L2,T/L3,U/T1,V/T2/,WT3,+1,+2/B1,-,B2,			
Models	Wire Gauge		Screw Size \& Torque (? 0\%)
	Max. Wire Gauge	Min. Wire Gauge	
VFD150ED23S	$\begin{gathered} \text { 2AWG } \\ {[33.6 \mathrm{~mm} 2]} \end{gathered}$	4AWG	$\begin{gathered} \text { M6 } \\ 50 \mathrm{kgf}-\mathrm{cm} \\ (43.4 \mathrm{lbf}-\mathrm{in}) \\ (4.9 \mathrm{Nm}) \end{gathered}$
VFD300ED43S		[21.1 mm 2]	
VFD185ED23S		3AWG[26.7 mm 2$]$	
VFD220ED43S		6AWG2]	
VFD220ED23S		2AWG[33.6 mm 2]	

UL installations must use 600V, 75? wire. Use copper wire only. NOTE:

1. Figure 1 shows the terminal specification.
2. Figure 2 shows the specification of
insulated heat shrink tubing that comply with UL (600V, YDPU2).

Figure 1

Frame E

05 Control Terminals

Remove the top cover before wiring the multi-function input and output terminals
The motor drives' fiugres shown below are for reference only, the real motor drives may look different.

Remove the cover before wiring

Frame B, C \& D:

Frame E
Soosen the 2 screws,
Then follow the
direction of the
arrow
to remove
the top
cover

Specifications of the Control Terminal

Control Circuit Terminal Sockets:

Terminal sockets A, B, C
Torque force: $2 \mathrm{~kg}-\mathrm{cm}$ [1.7lb-in.] (0.20Nm)
Wire gauge: $28 \sim 14 A W G\left[0.08 \sim 2.07 \mathrm{~mm}^{2}\right]$

Terminal socket D:

Torque force: $2 \mathrm{~kg}-\mathrm{cm}[1.7 \mathrm{lb}-\mathrm{in}$.$] (0.20 \mathrm{Nm}$)

Terminal socket E:

Torque force: $5.2 \mathrm{~kg}-\mathrm{cm}$ [4.5lb-in.] (0.51Nm)
Wire gauge: 28~12AWG[0.08~3.33mm²]
To comply with UL standards, copper wires which are able to sustain $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ environment must be used in the installation.

Control Board Switch

| ACM | Analog signal common terminal
 control | Analog sigal terminal |
| :---: | :--- | :--- | :--- |
| RA | Multi-function relay output A (N.O.) | |

06 Optional Accessories

The optional accessories listed in this chapter are available upon request. Installing additional accessories to your drive would substantially improve the drive's performance. Please select an applicable accessory according to your need or contact the local distributor for suggestion.

6-1 Brake Reistors \& Brake Units used in AC motor Drives

Voltage	Applicable Motor Model	*125\% Braking Torque /10\%ED								**Max. Brake Torque		
		***Braking Torque (kg-m)	Brake Unit		Resistor value spec. for each AC motor Drive	Braking Resistor series for each Brake Unit			Braking Current (A)	Min. Resistotr Value(Ω)	Max. Total Braking Current(A)	Peak Power (kW)
			VFDB	Quan- tity		***Part\#	Quan- tity	Wiring method				
230V	VFD022ED	1.5			300W 70,	BR300W070	1		5.4	38.0	10	3.8
	21S											
	VFD037ED	2.5			400W 40ת	BR400W040	1		9.5	19.0	20	7.6
	215											
	VFDO40ED	2.5			400W 40ת	BR400W040	1		9.5	19.0	20	7.6
	23S											
	VFD055ED	3.7			1000W 20Ω	BR1K0W020	1		19	15.6	24	9.3
	23S											
	VFD075ED	5.1			1500W 13Ω	BR1K5W013	1		29	11.5	33	12.5
	23S											
	VFD110ED	7.5			1500W 13,	BR1K5W013	1		29	9.5	40	15.2
	23S											
	VFD150ED	10.2			2000W 8.6Ω	BR1K0W4P3	2	2 serial	44	8.3	46	17.5
	23S											
	VFD185ED	12.2			2400W 7.8Ω	BR1K2W3P9	2	2 serial	49	5.8	66	25.1
	23S											
	VFD220ED	14.9			3000W 6.6ת	BR1K5W3P3	2	2 serial	58	5.8	66	25.1
	23S											
	VFD300ED	20.3	2015	2	4000W 5.1ת	BR1K0W5P1	2	2 serial	75	4.8	80	30.4
	23S											
	VFD370ED	25.1	2022	2	4800W 3.98	BR1K2W3P9	2	2 serial	97	3.2	120	45.6
	23S											
460 V	VFDO40ED	2.7			1000W 75Ω	BR1K0W075	1		10.2	54.3	14	10.6
	43S											
	VFD055ED	3.7			1000W 758	BR1K0W075	1		10.2	48.4	16	11.9
	43S											

	VFD075ED 43S	5.1			1500W 438	BR1K5W043	1		17.6	39.4	19	14.7
	VFD110ED 43S	7.5			1500W 438	BR1K5W043	1		17.6	42.2	18	13.7
	VFD150ED 43S	10.2			2000W 32Ω	BR1K0W016	2	2 serial	24	25.0	30	23.1
	VFD185ED 43S	12.2			3000W 26Ω	BR1K5W013	2	2 serial	29	20.8	37	27.7
	VFD220ED 43 S	14.9			3000W 26Ω	BR1K5W013	2	2serial	29	19.0	40	$30 . .4$
	VFD300ED $43 \mathrm{~S}$	20.3			4000W 16ת	BR1K0W016	4	$\begin{aligned} & \hline 2 \text { parallel } \\ & 2 \text { serial } \end{aligned}$	47.5	14.1	54	41.0
	VFD370ED 43S	25.1	4045	1	4800W 15	BR1K2W015	4	$\begin{aligned} & \text { 2parallel } \\ & 2 \text { serial } \end{aligned}$	50	12.7	60	45.6
	VFD450ED 43S	30.5	4045	1	6000W 13,	BR1K5W013	4	$\begin{aligned} & \hline 2 \text { parallel } \\ & 2 \text { serial } \end{aligned}$	59	12.7	60	45.6
	VFD550ED 43S	37.2	4030	2	8000W 10.2Ω	BR1K0W5P1	4	4 serial	76	9.5	80	60.8
	VFD750ED 43S	50.8	4045	2	9600W 7.5ת	BR1K2W015	4	2 parallel 2 serial	100	6.3	120	91.2

Calculation of 125% brake toque: $(\mathrm{kw})^{} 125 \% * 0.8$; where 0.8 is the motor efficiency.
Since there is a resistor limit of power consumption, the longest operation time for 10\%ED is 10 sec (On: 10sec/ Off: 90sec).
**Refer to the Brake Performance Curve for "Operation Duration \& ED" vs. "Braking Current".
***The calculation of the braking torque I s based on a 4-pole motor(1800 rpm).
****To dissipate heat, a resistor of 400W or lower should be fixed to the frame and maintain the surface temperature below $250^{\circ} \mathrm{C}\left(482{ }^{\circ} \mathrm{F}\right)$; a resistor of 1000 W and above should maintain the surface temperature below $600^{\circ} \mathrm{C}(1112$ ${ }^{\circ} \mathrm{F}$). If the surface temperature is higher than the temperature limit, install more heat dissipating system or incrase the size of the resistor

Thermal Relay:

Thermal relay selection is based on its overload capability. A standard braking capacity of ED is 10% ED (Tripping time=10s). The figure on the left is an example of $460 \mathrm{~V}, 110 \mathrm{kw}$ AC motor drive. It requires the thermal relay to take 260\% overload capacity for 10sec (hot starting) and the braking current is 126A. In this case, user should select a rated 50A thermal relay. The property of each thermal relay may vary among different manufacturers. Read carefully the user guide of a thermal relay before using it. .

6-2 Non-fuse Circuit Brekaer

Comply with UL standard: Per UL 508, paragraph 45.8.4, part a. The rated current of a breaker shall be 2~4 times of the maximum rated input current of AC motor drive.

3-phase	
Model	Recommended non-fuse breaker(A)
VFD022ED21S	50
VFD037ED21S	50
VFD040ED23S	40
VFD055ED23S	50
VFD075ED23S	60
VFD110ED23S	100
VFD150ED23S	125
VFD185ED23S	150
VFD220ED23S	175
VFD300ED23S	225
VFD370ED23S	250

3-phase	
Model	Recommended non-fuse breaker(A)
VFD040ED43S	20
VFD055ED43S	30
VFD075ED43S	40
VFD110ED43S	50
VFD150ED43S	60
VFD185ED43S	75
VFD220ED43S	100
VFD300ED43S	125
VFD370ED43S	150
VFD450ED43S	175
VFD550ED43S	250
VFD750ED43S	300

6-3 Fuse Specification Chart

- Use only the fuses comply with UL certificated.
- Use only the fuses comply with local regulations.

Model	Inuput Current (A)	Output Current (A)	Line Fuse	
			$\mathrm{I}(\mathrm{A})$	Bussmann P/N
VFD022ED21S	26	12	50	JJN-50
VFD037ED21S	17	17	50	JJN-50
VFD040ED23S	23	20	40	JJN-40
VFD055ED23S	26	25	50	JJN-50
VFD075ED23S	34	33	60	JJN-60
VFD110ED23S	50	49	100	JJN-100
VFD150ED23S	60	65	125	JJN-125
VFD185ED23S	75	75	150	JJN-150
VFD220ED23S	90	90	175	JJN-175
VFD300ED23S	110	120	225	JJN-225
VFD370ED23S	142	145	250	JJN-250
VFD040ED43S	13	11.5	50	JJN-20
VFD055ED43S	14	13	30	JJN-30
VFD075ED43S	19	18	40	JJN-40
VFD110ED43S	25	24	50	JJN-50
VFD150ED43S	32	32	60	JJN-60
VFD185ED43S	39	38	75	JJN-70
VFD220ED43S	49	45	100	JJN-100
VFD300ED43S	60	60	125	JJN-125
VFD370ED43S	63	73	150	JJN-150
VFD450ED43S	90	91	175	JJN-175
VFD550ED43S	130	110	250	JJN-250
VFD750ED43S	160	150	300	JJN-300

6-4 AC/ DCRactor

AC Input/ Output Reactor

200V~230V/ 50~60Hz (Single Phase Power)

Type	KW	HP	Rated Amps (Arms)	Max. Continuous Amps (Arms)	3% impedance (mH)	5% impedance (mH)	Built-in DC Reactor	3\% Input AC reacotr Delta Part\#
022	2.2	3	12	24	0.919	1.531	X	N/A
037	3.7	5	17	34	0.649	1.081	X	N/A

200V~230V/ 50~60Hz (Three-phase power)

Type	KW	HP	Rated Amps (Arms)	Continuous Amps (Arms)	3% impedance (mH)	5% impedance (mH)	Built-in DC Reactor	3\% Input AC reacotr Delta Part\#
040	4	5	20	40	0.551	0.919	X	N / A
055	5.5	7.5	24	48	0.459	0.766	X	N / A
075	7.5	10	30	60	0.320	0.534	X	N / A
110	11	15	45	90	0.216	0.359	X	N / A
150	15	20	58	116	0.163	0.271	X	N / A
185	18.5	25	77	154	0.143	0.239	X	N / A
220	22	30	87	174	0.127	0.211	X	N / A
300	30	40	132	264	0.084	0.139	O	N / A
370	37	50	161	322	0.068	0.114	O	N / A

$380 \mathrm{~V} \sim 460 \mathrm{~V} / 50 \sim 60 \mathrm{~Hz}$ (Three-phase power)

Type	KW	HP	Rated Amps (Arms)	Max. Continuous (Arms)	3% impedance (mH)	5% impedance (mH)	Built-in DC Reactor	3\% Input AC reacotr Delta Part\#
040	4	5	11.5	23	1.838	3.063	X	N / A
055	5.5	7.5	13	26	1.626	2.710	X	N / A
075	7.5	10	17	34	1.243	2.072	X	N / A
110	11	15	23	46	0.919	1.531	X	N / A
150	15	20	30	60	0.704	1.174	X	N / A
185	18.5	25	38	76	0.556	0.927	X	N / A
220	22	30	45	90	0.470	0.783	X	N / A
300	30	40	58	116	0.364	0.607	X	N / A
370	37	50	80	160	0.264	0.440	O	N / A
450	45	60	100	200	0.211	0.352	O	N / A
550	55	75	121	242	0.175	0.291	O	N / A
750	75	100	146	292	0.145	0.241	O	N / A

DC Input/Output Reactor
200V~230V/ 50~60Hz (Three-phase power)

Type	KW	HP	Rated Amps (Arms)	Max. Continuous Amps (Arms)	DC Reactor (mH)	DC Reactor Delta Part\#
040	4	5	20	40	1.273	N/A
055	5.5	7.5	24	48	1.061	$\mathrm{~N} / \mathrm{A}$
075	7.5	10	30	60	0.740	$\mathrm{~N} / \mathrm{A}$
110	11	15	45	90	0.498	$\mathrm{~N} / \mathrm{A}$
150	15	20	58	116	0.375	$\mathrm{~N} / \mathrm{A}$
185	18.5	25	77	154	0.331	$\mathrm{~N} / \mathrm{A}$
220	22	30	87	174	0.293	$\mathrm{~N} / \mathrm{A}$
300	30	40	132	264	0.193	$\mathrm{~N} / \mathrm{A}$
370	37	50	161	322	0.158	$\mathrm{~N} / \mathrm{A}$

$380 \mathrm{~V} \sim 460 \mathrm{~V} / 50 \sim 60 \mathrm{~Hz}$ (Three-phase power)

Type	KW	HP	Rated Amps (Arms)	Max. Continuous Amps (Arms)	DC Reactor (mH)	DC Reactor Delta Part\#
040	4	5	11.5	23	4.244	$\mathrm{~N} / \mathrm{A}$
055	5.5	7.5	13	26	3.754	$\mathrm{~N} / \mathrm{A}$
075	7.5	10	17	34	2.871	$\mathrm{~N} / \mathrm{A}$
110	11	15	23	46	2.122	$\mathrm{~N} / \mathrm{A}$
150	15	20	30	60	1.627	$\mathrm{~N} / \mathrm{A}$
185	18.5	25	38	76	1.284	$\mathrm{~N} / \mathrm{A}$
220	22	30	45	90	1.085	$\mathrm{~N} / \mathrm{A}$
300	30	40	58	116	0.842	$\mathrm{~N} / \mathrm{A}$
370	37	50	80	160	0.610	$\mathrm{~N} / \mathrm{A}$
450	45	60	100	200	0.488	$\mathrm{~N} / \mathrm{A}$
550	55	75	121	242	0.403	$\mathrm{~N} / \mathrm{A}$
750	75	100	146	292	0.334	$\mathrm{~N} / \mathrm{A}$

THD (Total Harmonic Distortion)

Motor Drive Spec.	Without Built-In Reactor				With Built-in DC Reactor
Reactor Spec.	3% Input AC Reactor	DC Reactor	DC Reactor $+3 \%$ Input Reactor	DC $+5 \%$ Input Reactor	3% Input Reactor

According to IEC61000-3-12, DC Reactor is designed with 4\% system impedance, and AC Reactor is designed with 3% system impedance.

6-5 Zero Phase Reactor

unit: mm(inch)

Model	A	B	C	D	E	F	$\mathbf{G (\varnothing)}$	Torque
RF008X00A	98	73	36.5	29	56.5	86	5.5	$8 \sim 10 \mathrm{kgf} / \mathrm{cm}$
	(3.858)	(2.874)	(1.437)	(1.142)	(2.224)	(3.386)	(0.217)	
RF004X00A	110	87.5	43.5	36	53	96	5.5	$8 \sim 10 \mathrm{kgf} / \mathrm{cm}$

unit: mm(inch)

model	A	B	C	D	E	F	G(Ø)	H	I
RF300X00A	241(9.488)	217(8.543)	114(4.488)	155(6.102)	42(1.654)	220(8.661)	6.5(0.256)	7.0(0.276)	20(0.787)
								Torque:40~45kgf/cm	

Reactor model (Note)	Recommended Wire Size		Wiring Method	Qty	Applicable Motor Drive
RF008X00A	$\leqq 8$ AWG	$\leqq 8.37 \mathrm{~mm}^{2}$	Diagram A	1	VFD022ED21S VFD037ED21S VFD040ED23S VFD040ED43S
RF004X00A	$\leqq 4$ AWG	$\leqq 21.15 \mathrm{~mm}^{2}$	Diagram A	1	VFD055ED23S VFD075ED23S VFD110ED23S VFD055ED43S VFD075ED43S VFD110ED43S VFD150ED43S VFD185ED43S
RF002X00A	$\leqq 2$ AWG	$\leqq 33.62 \mathrm{~mm}^{2}$	Diagram A	1	VFD150ED23S VFD185ED23S VFD220ED23S VFD220ED43S VFD300ED43S
RF300X00A	$\leqq 300 \mathrm{MCM}$	$\leqq 152 \mathrm{~mm}^{2}$	Diagram A	1	VFD300ED23S VFD370ED23S VFD370ED43S VFD450ED43S VFD550ED43S VFD750ED43S

Note: 600 V insulated cable wire

Diagram A

Put all wires through at least one core without winding
Zero Phase Reactor

Note 1: The table above gives approximate wire size for the zero phase reactors but the selection is ultimately governed by the type and diameter of cable fitted i.e. the cable must fit through the center hole of zero phase reactors.

Note 2: Only the phase conductors should pass through, not the earth core or screen.
Note3: When long motor output cables are used an output zero phase reactor may be required to reduce radiated emissions from the cable.

6-6 EMI Filter

For the detailed specifications of the EMI filters listed in the table below, search the Internet.

Motor Drive	Applicable EMI Filter
VFD022ED21S VFD037ED21S	MDF50 (Roxburgh EMC)
VFD040ED43S VFD055ED43S	EMF018A43A
VFD075ED43S VFD110ED43S	EMF033A43A
VFD040ED23S VFD055ED23S	EMF035A23A
VFD075ED23S VFD110ED23S	EMF056A23A
VFD150ED43S	EMF039A43A
VFD185ED43S VFD220ED43S	KMF370A (Roxburgh EMC)
VFD150ED23S VFD185ED23S VFD300ED43S VFD370ED43S	KMF3100A (Roxburgh EMC)
VFD220ED23S VFD450ED43S VFD550ED43S	B84143D0150R127
VFD300ED23S VFD370ED23S VFD750ED43S	B84143D0200R127

EMI Filter Installation

All electrical equipment, including AC motor drives, will generate high-frequency/low-frequency noise and will interfere with peripheral equipment by radiation or conduction when in operation. By using an EMI filter with correct installation, much interference can be eliminated. It is recommended to use DELTA EMI filter to have the best interference elimination performance.

We assure that it can comply with following rules when AC motor drive and EMI filter are installed and wired according to user manual:

- EN61000-6-4
- EN61800-3: 1996
- EN55011: (1991) Class A Group 1 (1st Environment, restricted distribution)

General precaution

1. EMI filter and AC motor drive should be installed on the same metal plate.
2. Install AC motor drive on footprint EMI filter or install EMI filter as close as possible to the AC motor drive.
3. Wire as short as possible.
4. Metal plate should be grounded.
5. The cover of EMI filter and AC motor drive or grounding should be fixed on the metal plate and the contact area should be as large as possible.

Choose suitable motor cable and precautions

Improper installation and choice of motor cable will affect the performance of EMI filter. Be sure to observe the following precautions when selecting motor cable.

1. Use the cable with shielding (double shielding is the best).
2. The shielding on both ends of the motor cable should be grounded with the minimum length and maximum contact area.
3. Remove any paint on metal saddle for good ground contact with the plate and shielding

Remove any paint on metal saddle for good ground contact with the plate and shielding.

Figure 1

Figure 2

The length of motor cable

1. Required cable length when the motor drive is at full load.
a. Non-shielded cable: For models of $5.5 \mathrm{~kW}(7.5 \mathrm{HP})$ and below, the maximum cable length is 100 m (328 ft) . For $7.5 \mathrm{~kW}(10 \mathrm{HP})$ and above, the maximum cable length is $200 \mathrm{~m}(656 \mathrm{ft})$
b. Shielded cable: For models of $5.5 \mathrm{kw}(7.5 \mathrm{HP})$ and below, the maximum cable length is $50 \mathrm{~m}(165 \mathrm{ft})$. For models of $7.5 \mathrm{~kW}(10 \mathrm{HP})$, the maximum cable length is $100 \mathrm{~m}(328 \mathrm{ft})$.

If the cable length is longer than the recommended lengthes above, it will be necessary to install an output reactor.

NOTE

$>$ If the length is too long, the stray capacitance between cables will increase and may cause leakage current. It will activate the protection of over current, increase leakage current or not insure the correction of current display. The worst case is that AC motor drive may damage.
$>$ If more than one motor is connected to the AC motor drive, the total wiring length is the sum of the wiring length from $A C$ motor drive to each motor.
$>$ For the 460 V series AC motor drive, when an overload relay is installed between the drive and the motor to protect motor over heating, the connecting cable must be shorter than 50 m . However, an overload relay malfunction may still occur. To prevent the malfunction, install an output reactor (optional) to the drive or lower the carrier frequency setting (Pr.00-12).

2. Consequence of the surge voltages on the motor

When a motor is driven by an AC motor drive of PWM type, the motor terminals will experience surge voltages easily due to components conversion of AC motor drive and cable capacitance. When the motor cable is very long (especially for the 460 V series), surge voltages may reduce insulation quality. To prevent this situation, please follow the rules below:

■ Use a motor with enhanced insulation.
■ Connect an output reactor (optional) to the output terminals of the AC motor drive
■ The length of the cable between AC motor drive and motor should be as short as possible (10 to 20 m or less)
■ For models 7.5hp and above:

Insulation level of motor	1000 V	1300 V	1600 V
460 VAC input voltage	$20 \mathrm{~m}(66 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$	$400 \mathrm{~m}(1312 \mathrm{ft})$
230 VAC input voltage	$400 \mathrm{~m}(1312 \mathrm{ft})$	$400 \mathrm{~m}(1312 \mathrm{ft})$	$400 \mathrm{~m}(1312 \mathrm{ft})$

■ For models 5hp and less:

Insulation level of motor	1000 V	1300 V	1600 V
460VAC input voltage	$20 \mathrm{~m}(66 \mathrm{ft})$	$50 \mathrm{~m}(165 \mathrm{ft})$	$50 \mathrm{~m}(165 \mathrm{ft})$
230VAC input voltage	$100 \mathrm{~m}(328 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$

NOTE

Never connect phase lead capacitors or surge absorbers to the output terminals of the AC motor drive.

6-7 Digital Keypad

1 KPC-CE01

A: LED Display
Display frequency, current, voltage and error etc.
Status Indicator
F: Frequency Command
H: Output Frequency
U: User Defined Units
ERR: CAN Error Indicator RUN: CAN Run Indicator

C: Function

(Refer to the chart follows for detail description)

| Key | Description |
| :---: | :--- | :--- |
| ESC | ESC Key
 Press ESC key to return to the previous page. It also functions as a return to last category key in the sub-menu. |
| MENU | Menu Key
 Press MENU key under any condition will return to the main MENU.
 Menu content:
 1. Parameter Detail
 2. Copy Parameter |
| ENTER | ENTER Key
 Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command. |
| HAND | HAND ON Key
 1. HAND key will operates according to the parameter settings when the source of HAND master frequency
 command and the source of HAND operation command is properly set,. The factory setting of the source
 command for frequency and operation are from the digital keypad. |
| AUTO | 2. Press HAND key in stop status, the drive setting switches to the parameter setting of HAND. Press HAND
 key in during operation, the drive will come to stop then switches to the parameter setting of HAND.
 3. When process complete: H/A LED ON. |
| Auto Operation Key
 1. AUTO function executes according to the parameter settings of the source of AUTO frequency and AUTO
 operation. The factory setting is the external terminal (source of operation is 4-2OmA). | |
| 2. Press the ATUO key in stop status, the drivel switches to auto-setting. Press the auto key during operation | |
| status, the drivel will come to stop and switch to auto-setting. | |

Descriptions of LED Functions

Dimension

RJ45 Extension Lead for Digital Keypad

Part \#	Description
CBC-K3FT	3 feet RJ45 extension lead (approximately 0.9 m)
CBC-K5FT	5 feet RJ45 extension lead (approximately 1.5 m)
CBC-K7FT	7 feet RJ45 extension lead (approximately 2.1 m)
CBC-K10FT	10 feet RJ45 extension lead (approximately 3 m)
CBC-K16FT	16 feet RJ45 extension lead (approximately 4.9 m)

6-8 USB/RS-485 Communication Interface IFD6530

. Warning

\checkmark Read thoroughly this section before installation and putting it into use.
\checkmark The content of this section and the driver file may be revised without prior notice. Consult our distributors or download the most updated instruction/driver version at AC Motor Drive > Optional

Introduction

IFD6530 is a convenient RS-485-to-USB converter, which does not require external power-supply and complex setting process. It supports baud rate from 75 to 115.2 kbps and auto switching direction of data transmission. In addition, it adopts RJ-45 in RS-485 connector for users to wire conveniently. And its tiny dimension, handy use of plug-and-play and hot-swap provide more conveniences for connecting all DELTA IABU products to your PC.

Applicable Models: All DELTA IABU products.

- Application \& Dimension:

Specifications

Power supply	No external power is needed
Power consumption	1.5 W
Isolated voltage	$2,500 \mathrm{VDC}$
Baud rate	$75,150,300,600,1,200,2,400,4,800,9,600,19,200,38,400,57,600,115,200 \mathrm{bps}$
RS-485 connector	RJ-45
USB connector	A type (plug)
Compatibility	Full compliance with USB V2.0 specification
Max. cable length	RS-485 Communication Port: 100 m
Support RS-485 half-duplex transmission	

RJ-45

PIN	Description
1	Reserved
2	Reserved
3	GND
4	SG-

PIN	Description
5	SG+
6	GND
7	Reserved
8	+9 V

Prepration before Installing Driver

Extract the driver file (IFD6530_Drivers.exe) by following steps. You could find driver file (IFD6530_Drivers.exe) in the CD supplied with IFD6530.

Note: DO NOT connect IFD6530 to PC before extracting the driver file.

STEP 2

STEP 3

STEP 4

STEP 5

You should have a folder marked SiLabs under drive C. c: \backslash SiLabs

Intalling the Driver

After connecting IFD6530 to PC, install driver by following steps below.

LED Display

1. Steady Green LED ON: power is ON.
2. Blinking orange LED: data is transmitting.

07 Options Cards

Select applicable option cards for your drive or contact local distributor for suggestion. To prevent drive damage during installation, remove the digital keypad and the cover before wiring. Refer to the following instruction.

Remove the top cover

Frame B, C \& D Screw Torque: Kg-cm [lb-in.]
Step1

Vertical viewe of the motor drive \& Screw's Specificatons:

Screws' Specification for Option Card Terminal:

PG Card	Wire Gauge	Torque
EMED-PGABD-1	$30 \sim 16$ AWG $\left(0.05 \sim 1.31 \mathrm{~mm}^{2}\right)$	$1.6 \mathrm{Kg}-\mathrm{cm}[1.4 \mathrm{lb}-\mathrm{in}]$
EMED-PGHSD-1	$30 \sim 16$ AWG $\left(0.05 \sim 1.31 \mathrm{~mm}^{2}\right)$	$1.6 \mathrm{Kg}-\mathrm{cm}[1.4 \mathrm{lb}-\mathrm{in}]$

7-1 EMED-PGABD-1

Applicable enoder: A/B/Z \& U/V/W Absolute Encoders

NOTE

- Verify if the SW1 is set to the correct output voltage before power on.
- Keep away from any high voltage line when wiring the mtor drive to avoid interference.

Terminal Specification

	Terminals	說明 Descriptions
TB2	Vin	Terminal for voltage input, to adjust the amplitude of output voltage at terminal A/O and terminal B/O. It also provdieds a 5 V voltage to support line driver's signal. Vin voltage range: 8~24V, Max: 24 V .
	A/O, B/O	Output signal of the push-pull frequency divider Factory setting: Output amplitude is about +24 V . Use SW2 to cut off the internal default power. Input required power (i.e. output voltage's amplitude) DVi voltage range Max : 24V (Push-Pull Voltage Output) Max. output frequency: 100kHz Support frequency dividing output, the frequency dividing range: 1~31Hz.
	GND	Common ground terminal connecting to the host controller and the motor drive.
	AO, /AO, BO, /BO	Line driver pulse output signal (Line Driver RS422) Max. output frequency: 150 kHz Support frequency dividing output, the frequency dividing range: $1 \sim 31 \mathrm{~Hz}$.
TB1	VP	Power output of encoder Note: Use SW1 to set up output voltage Voltage: $+5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ or $+12 \mathrm{~V} \pm 1 \mathrm{~V}$ Current: 200mA max
	OV	Common power terminal of encoder
	$\begin{gathered} A \cdot \bar{A} \cdot B, \\ \bar{B} \cdot Z \cdot \bar{Z} \end{gathered}$	Incremental encoder signal input terminal Types of input signal: line drive, voltage output, push-pull, open-collector) Note: Different input signal needs different wiring method. See user manual for wiring diagrams. Max.input frequency: 150 kHz
	$\begin{gathered} \mathrm{u} \cdot \overline{\mathrm{U}} \cdot \mathrm{v} \\ \overline{\mathrm{~V}} \cdot \mathrm{w} \cdot \bar{W} \end{gathered}$	Absolute encoder signal input terminal Types of input signal: : line drive, voltage, push-pull, open-collector) Note: Different input signal needs different wiring method. See user manual for wiring diagrams Max.input frequency: 150kHz
JP1	(b)	Ground Terminal Connect the power supply of the motor drive to the ground. Suport PG shielding
SW1		Switch between encoder's 5V/12V power.
	SW2	Offline Dectection Switch. Switch the the SW2 to Line-D side to enable offline detection when Line-D input signal. Switch the SW2 to OPEN-C sideto disable offline detection function when OPEN-C input signal.
	SW3	Switch of power supply for frequency division Switch SW3 to INP_sied to provide 24 V power for internal use. Switch SW3 to EXP side to provide 24 V power for external use (client).

Applicable encoders:
Push- pull

NOTE

- Verify if the SW1 is set to the correct output voltage before power on.
- Keep away from any high voltage line when wiring the mtor drive to avoid interference

Wiring Diagram

Set up the Signal of the Frequency Division

(1) After the encoder input a PULSE signal, there will be an output signal of the division factor "n." Use Pr10-29 <Output of PG card's frequency division> to set up.
(2) Setup of Pr10-29 <PG card's frequency division>:

Output of decimal frequency division setting. Range of the division factor " n ": 1~31.
(3) Pr10-30 <Mode of output of PG card's frequency division>

Bit3	Bit2	Bit1	Bit0
X	X	OUT/M	IN/M

OUT/M: Mode of pulse output of frequency divsion;
IN / M : Mode of pulse input of frequency division;
" X " is for backup while " 0 " is a value to write.
Setting and Description of Input Mode (IN/M) \& Output Mode(OUT/M):
OUT/ M IN/M

NOTE

- In the waveform $A-/ A, B-/ B$ are the PG card input signals; $A O-\overline{A O}, B O-\overline{\mathrm{BO}}$ are the differential output frequency division signals. (Use a differential probe to measure.)
- Division factor "n": Set 15 to have the input signal divided by 15.)
- When OUT/M, IN/M set as 0.0 , the PG card input signal $A-/ A, B-/ B$ are square waves while $\mathrm{AO}-\overline{\mathrm{AO}}, \mathrm{BO}-\overline{\mathrm{BO}}$ are frequency division output.
- When OUT/M, IN/M are set as 1.0, the PG card input signal A-/A, B-/B are square waves while the $\mathrm{BO}-\overline{\mathrm{BO}}$ is the phase indicator of A and B
- When OUT/M, IN/M are set as X, $B-/ B$ phase has to be direction indication input signal (e.g. When $B-/ B$ is LOW, it means A is ahead of B. When $B-/ B$ is HIGH, it means B is ahead of A)
- Take Pr10-29 and Pr10-30 as examples. When frequecy division value $=15, \mathrm{OUT} / \mathrm{M}=1, \mathrm{IN} / \mathrm{M}=0$, set $\operatorname{Pr} 10-29=15$ and $\operatorname{Pr} 10-30=0002 \mathrm{~h}$.
Set $\operatorname{Pr} 100-29=15$,
Set Pr10-30 =0002h

Bit3	Bit2	Bit1	Bit0
X	X	$\mathbf{1}$	$\mathbf{0}$

7-2 EMED-PGHSD-1

Applicable enoder:
Sine-wave: Heidenhain ERN1387
EnDat2.1: Heidenhain EQN425, EQN1325, ECN113, ECN413, ECN1113, ECN1313
SICK HIPERFACE: SRS50/60

To use with Heidenhain ERN1387:
EMED-PGHSD-1 J3

Terminal \#	Terminals
5 a	$\mathrm{B}-$
-	-
4 b	$\mathrm{R}+$
4 a	$\mathrm{R}-$
6 b	$\mathrm{~A}+$
2 a	$\mathrm{A}-$
5 b	0 V
3 b	$\mathrm{~B}+$
1 b	UP
1 a	$\mathrm{C}-$
7 b	$\mathrm{C}+$
2 b	$\mathrm{D}+$
6 a	$\mathrm{D}-$
-	-
-	-

Pr

Terminal Function:

	Terminals	Descriptions	Specifications
J3	VP	Encoder voltage input. Use SW2 to set $+5 \mathrm{~V} /+8 \mathrm{~V}$	Voltage: $+5.1 \mathrm{Vdc} \pm 0.3 \mathrm{~V} ;+8.4 \mathrm{Vdc} \pm 1.5 \mathrm{~V}$ Current: 200mA max.
	OV	Encoder common power terminal	Reference level of encoder's power.
	$\begin{gathered} A+, ~ A-, ~ B+, ~ B-~, ~ Z+~ \\ Z- \end{gathered}$	Encoder sine wave differential signal input (Incremental signal)	
	$C+, ~ C-~ D+, ~ D-~$	Encoder sine wave differential signal input (Absolute signal)	

Wiring Diagram

To use with Heidenhain EDat2.1/ SICK HIPERFACE:

EMED-PGHSD-1 J3	
$\left.0 \begin{array}{\|ccccc} (5) & 4 & 3 & 2 & (1) \\ 10 & 9 & 8 & 7 & 6 \\ 15 & 14 & 13 & 12 & (11 \end{array}\right]$	
Terminal \#	Terminals
1	B-
2	-
3	Z+
4	Z-
5	A+
6	A-
7	OV
8	B+
9	VP
10	C+
11	C-
12	D+
13	D-
14	-
15	-

Heidenhain ECN1313	

| SICK SRS 50/ SRS 60 | |
| :---: | :---: | :---: |

Terminal Function:

Terminals		Descriptions	Specifications
J3	VP	Encoder voltage input. Use SW2 to set $+5 \mathrm{~V} /+8 \mathrm{~V}$	Voltage: $+5.1 \mathrm{Vdc} \pm 0.3 \mathrm{~V} ;+8.4 \mathrm{Vdc} \pm 1.5 \mathrm{~V}$ Current: 200mA max.
	OV	Encoder common power terminal	Reference level of encoder's power.
	$A+, ~ A-, ~ B+, ~ B-$	Encoder sine wave differential signal input (Incremental signal)	Input frequency:40k Hz max.
	$\begin{aligned} & \text { +SIN , +COS , } \\ & \text { REFSIN • REFCOS } \end{aligned}$	Encoder sine wave differential signal input	Input frequency: 20k Hz max.
	CLOCK+, CLOCK-	CLOCK differential output	(Line Driver RS422 Level output)
	Data+, Data-	RS485 communication interface	Terminal resistance is about 130Ω

Wiring Diagram

Set up the Signal of the Frequency Division

(1) After the encoder input a PULSE signal, there will be an output signal of the division factor " n." Use Pr10-29 <Output of PG card's frequency division> to set up.
(2) Pr10-30 <Mode of output of PG card's frequency division>

Output of decimal frequency division setting. Range of the division factor " n ": 1~31.
(3) Pr10-30 <Mode of output of PG card's frequency division>

Bit3	Bit2	Bit1	Bit0
X	X	OUT/M	IN/M

OUT/M: Mode of pulse output of frequency division;
IN/M: Mode of pulse input of frequency division;
" X " is for backup while " 0 " is a value to write.

Setting and Description of Input Mode (IN/M) \& Output Mode(OUT/M):

NOTE

- In the waveform A-/A, B-/B are the PG card input signals; $\mathrm{AO}-\overline{\mathrm{AO}}, \mathrm{BO}-\overline{\mathrm{BO}}$ are the differential output frequency division signals. (Use a differential probe to measure.)
■ Division factor " n ": Set 15 to have the input signal divided by 15.)
- When OUT/M, IN/M set as 0.0 , the PG card input signal A-/A, B-/B are square waves while $\mathrm{AO}-\overline{\mathrm{AO}}, \mathrm{BO}-\overline{\mathrm{BO}}$ are frequency division output.
■ When OUT/M, IN/M are set as 1.0, the PG card input signal $A-/ A, B-/ B$ are square waves while the $\mathrm{BO}-\overline{\mathrm{BO}}$ is the phase indicator of A and B
- When OUT/M, IN/M are set as X, $B-/ B$ phase has to be direction indication input signal (e.g. When $B-/ B$ is LOW, it means A is ahead of When B-/B is HIGH, it means B is ahead of A)
■ Take Pr10-29 and Pr10-30 as examples. when frequency division value $=15, O U T / M=1, I N / M=0$, set $\operatorname{Pr} 10-29=15$ and $\operatorname{Pr} 10-30=0002 \mathrm{~h}$.
Set Pr100-29 =15,
Set Pr10-30 $=0002 \mathrm{~h}$

Bit3	Bit2	Bit1	Bit0
X	X	$\mathbf{1}$	$\mathbf{0}$

Chapter 8 Specifications

230V Series

Frame Size	B			C			D			E	
Model VFD-___ED23/21S	022*	037*	040	055	075	110	150	185	220	300	370
Applicable Motor Output(KW)	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22	30	37
Applicable Motor Output (HP)	3	5	5	7.5	10	15	20	25	30	40	50
Rated Output Capacity(KVA)	4.8	6.8	7.9	9.5	12.5	19	25	29	34	46	55
응 Rated Output Current (A)	12.0	17	20.0	24.0	30.0	45.0	58.0	77.0	87.0	132.0	161.0
$\underset{\sim}{\widetilde{\sim}}$ Maximum Output Voltage (V)	3-phase Proportional to Input Voltage										
\pm Output Frequency	$0.00 \sim 400 \mathrm{~Hz}$										
을 Carrier Frequency	2~15kHz									2~9kHz	
O Rated Output Maximum Carrier Frequency	8kHz			10kHz			8kHz			6 kHz	
Input Current(A)	26	37.4	20	23	30	47	56	73	90	132	161
	1-phase 3-phase										
믇	200~240V 50/60Hz										
\simeq Voltage Tolerance	$\pm 10 \%$ (180~264V)										
Frequency Tolerance	$\pm 5 \%$ (47~63Hz)										
Cooling Method	Fan cooled										
Weight (kg)	6	6	6	8	10	10	13	13	13	36	36

460V Series

Frame Size		B	C					D		E			
Mod	el VFD-___ED43S	040	055	075	110	150	185	220	300	370	450	550	750
App	licable Motor Power(KW)	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55	75
App	icable Motor power(HP)	5	7.5	10	15	20	25	30	40	50	60	75	100
	Rated Output Capacity (KVA)	9.2	10.4	13.5	18.3	24	30.3	36	46.2	63.7	80	96.4	116.3
	Rated Output Current (A)	11.5	13	17	23	30	38	45	58	80	100	128	165
	Maximum Output Voltage(V)	3-phase Proportional to Input Voltage											
	Output Frequency	$0.00 \sim 400 \mathrm{~Hz}$											
	Carrier Frequency	$2 \sim 15 \mathrm{kHz}$							2~ 9kHz			$2 \sim 6 \mathrm{kHz}$	
	Rated Output Maximum Carrier Frequency	8kHz	10kHz			8kHz			6 kHz				
	Rated Input Current(A)	11.5	14	17	24	30	37	47	58	80	100	128	165
	Rated voltage	3-phase 380~480V $50 / 60 \mathrm{~Hz}$											
	Voltage Tolerance	$\pm 10 \%$ (342~528V)											
	Frequency Tolerance	$\pm 5 \%$ (47~63Hz)											
Cooling Method		Fan cooled											
Weight (kg)		6	8	10	10	10	10	13	14.5	36	36	50	50

[^0]
General Specifications

	Control Method	1: V/F, 2: VF+PG, 3: SVC, 4: FOC+PG, 5: TQC+PG, 6:FOC+PM
	Starting Torque	Reach up to 150% or above at 0.5 H Under FOC+PG or FOC+PM mode, starting torque can reach 150% at 0 Hz .
	Speed Control Range	1:100(up to 1:1000 when using PG card)
	Speed Control Resolution	$\pm 0.5 \%$ (up to $\pm 0.02 \%$ when using PG card)
	Speed Response Ability	5 Hz (Up to 30 Hz for vector control)
	Max. Output Frequency	0.00 to 400 Hz
	Output Frequency Accuracy	Digital Command 0.005\%, Analog Command 0.5\%
	Frequency Setting Resolution	Digital Command 0.01 Hz , Analog Command: 1/4096(12 bit) of the max. output frequency.
	Torque limit	Max. is 200\% torque current
	Torque Accuracy	$\pm 5 \%$
	Accel/ Decel Time	0.00~600.00 seconds
	V/F Curve	Adjustable V/f curve using 4 independent points and square curve.
	Frequency Setting Signal	$\pm 10 \mathrm{~V}$
	Brake Torque	About 20\%
	Motor Protection	Electronic thermal relay protection.
	Over-current Protection	The current forces 200\% of the over-current protection and 250% of the rated current.
	Ground Leakage Current Protection	Higher than 50\% rated current
	Overload Ability	Constant torque: 150\% for 60 seconds, variable torque: 200% for 3 seconds
	Over-voltage Protection	Over-voltage level: Vdc > 400/800V; low-voltage level: Vdc < 200/400V
	Over-voltage Protection for the Input Power	Varistor (MOV)
	Over-temperature Protection	Built-in temperature sensor
	Protection Level	NEMA 1/IP20
	Operation Temperature	$-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$, Up to $50^{\circ} \mathrm{C}$ under derating operation
	Storage Temperature	$-20^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
	Ambient Humidity	90\% RH以下 (non- condensing)
	Vibration	1.0G less than $20 \mathrm{~Hz}, 0,6 \mathrm{G}$ at $20 \sim 60 \mathrm{~Hz}$
	Installation Location	Altitude 1,000m or lower, keep from corrosive gasses, liquid and dust.
	Power System	TN System ${ }^{* 1 \times 2}$
Certifications		$\mathrm{C} \text { UL } \mathrm{us}_{(\text {UL mark excludes VFD022ED21S and VFD037ED21S })}$

*1: TN system: The neutral point of the power system connects to the ground directly. The exposed metal components connect to the ground via the protective earth conductor.
*2: Single phase models use single phase three wire power system.

09 Digital Keypad

9-1Descriptions of Digital keypad

Digital Operation PaneIKPED-LE01

Function of Buttons

| Buttons | Description |
| :--- | :--- | :--- |
| | Horizontal movement button: To move the cursor position for value adjustment. |
| RESET | Reset the the motor drive after fault occurred. |
| MODE | Change between different diplay mode. |
| ENTER | Parameter setting button: To read or modify various parameter settings. |
| | 1.Two buttons available: Up and Down button
 2.
 3ress Up or Down button to increase or decrease the value of a number.
 Press Up or Down button to choose between menus and languages. |

LED Display

Description of the Displayed Functions

Displayed Function	Description
	Display the frequency setting of the VFD-ED
	Display the actual frequency delivered from VFD-ED to the motor.
	Display the user defind value at Pr00-04.
	Display the current (ampere)
	Display the selected parameter
	Display the value set at a parameter
	Display the external fault
	Display "End" for approximately 1 second if input has been accepted by pressing ENTER key. After a parameter value has been set, the new value is automatically stored in the register. To modify an entry, use the and keys.
	If the command given by the user is not accepted or the value of the command exceeds the allowed range, this error message will be displayed.

9-2 Operating theBuilt-in Digital Keypad

Setting Mode

Setting parameters

NOTE : In the parameter setting mode, you can press ENTER to the selected mode

To change data

\because है $\quad=$ है

Setting direction (When operation source is digital keypad)

9-3 Description of the Digital Keypad KPC-CC01

KPC-CC01

Communication Interface
RJ-45 (socket), -485 interface;
Installation Method

1. Embedded type and can be put flat on the surface of the control box. The front cover is water proof.
2. Buy a MKC-KPPK model to do wall mounting or embedded mounting. Its protection level is IP66.
3. The maximum RJ45 extension lead is $5 \mathrm{~m}(16 \mathrm{ft})$
4. This keypad can also be used on Delta's motor drive C2000, CH2000 and CP2000.

Function of Buttons

| Rutton | Start Operation Key
 1.
 2.
 It is only valid when the source of operation command is from the keypad.
 It can operate the AC motor drive by the function setting and the RUN LED will be ON.
 It can be pressed repeatedly while the motor drive is shutting down.. |
| :--- | :--- | :--- |

Description of LED Functions

LED	Description
RUN	Steady ON: operation indicator of the AC motor drive, including DC brake, zero speed, standby, restart after fault and speed search. Blinking: drive is decelerating to stop or in the status of base block. Steady OFF: drive doesn't execute the operation command
	Steady ON: stop indicator of the AC motor drive. Blinking: drive is in the standby status. Steady OFF: drive doesn't execute "STOP" command.
	Operation Direction LED 1. Green light is on, the drive is running forward. 2. Red light is on, the drive is running backward. 3. Twinkling light: the drive is changing direction.

9-4 Function of Digital Keypad KPC-CC01 POWER ON

Start-up
Skip to main page afer 3 sec .
1)The default Start-up page is Delta Logo.(Default 1 and 2)
2) User can customize their start-up page through the edited function. (Need to purchase the optional accessories)

NOTE

Startup page can only display pictures, no flash.
2. When Power ON, it will display startup page then the main page. The main page displays Delta's default setting F/H/A/U, the display order can be set by Pr. 00.03 (Startup display). When the selected item is U page, use left key and right key to switch between the items, the display order of U page is set by Pr.00.04 (User display).
3. VFD-ED doesn't support Function 3, 4 and 5.

Display Icon

Display Item

MENU
 - 1.Pr Setup
 2. Copy Pr 3. Keypad Lock

Item 1~4 are the common items for KPC-CC01 \&KPC-CE01

MENU 1.Parameter Setup 2.Copy Parameter 3.Keypad Locked 4.PLC Function
5. Copy PLC
6. Fault Record
7. Quick Start
8. Display Setup
9. Time Setup
10. Language Setup
11. Start-up
12. Main page
13. PC Link

1. Parameter Setup

Pr setup	For example: Setup source of master frequency command.	
	00-SYSTEM PARAME	
$00:$ SYSTEM PARAM	- 00: Identity Co	Once in the Group 00 Motor Drive Parameter, Use Up/Down key to select parameter 20 :
01:BASIC PARAME 02:DIGITALIN/	02: Param	Auto Frequency Command.
	00-SYSTEM PARAME	When this parameter is selected,
Press ENTER to select.	20: Source of F 21: Source of $O P$ 22: Stop Methods	ENTER key to go to this parameter's setting menu.
	$00-20$	Use Up/Down key to choose a setting
Press $\sqrt{\boxed{V}}$ to select a parameter group.	Analog $\stackrel{2}{\text { Input }}$	For example: Choose " 2 Analogue Input, then press the ENTER key.
Once a parameter group is selected,	00-20	
	Analog Input	displayed which means that the parameter setting is done.

2. Copy Parameter

| | Copypr
 $\hat{\Delta} 001: 18: 38: 58$
 $002:$
 $003:$ 4 | Press Right key to see the time of copying
 parameters. |
| :--- | :--- | :--- | :--- |

3. Lock the Keypad

Keypad Lock	Keypad Locked
Press ENTER to Lock Key	This function is used to lock the keypad. The main page would not display "keypad locked" when the keypad is locked, however it will display the message"please press ESC and then ENTER to unlock the keypad" when any key is pressed.
Press ENTER to lock	AUTO \&F 60.00 Hz H 0.00 Hz u 540.0 Vdc JOG $14: 35: 58$ When the keypad is locked, the main screen doesn't display any status to show that.
	\square Keypad Lock Press ESC 3 sec Press any key on the keypad; a screen as shown in
	Press ESC sec Press any key on the keypad; a screen as shown in ito UnLock Key image on the left will be displayed.
	If ESC key is not pressed, the keypad will automatically be back to this screen.
	Keypad Lock The keypad is still locked at this moment. By
	pressing any key, a screen as shown in the image on the left will still be displayed.
	Press ESC for 3 seconds to unlock the keypad and the keypad will be back to this screen. Then each key on the keypad is functional.
	Turn off the power and turn on the power again will not lock keypad.

4. Fault Record

KPC-CE01 does not support this function.

Able to store 6 error code (Keypad V1.02 and previous versions) Able to store 20 error code(Keypad V1.0e3 and previous version) The most recent error record is shown as the first record. Select an error record to see its detail such as date, tme, frequency, current, voltage, DCBUs voltage)	
Fault record $1: 0 \mathrm{~L}$ 2:ovd 3:GFF	Press Up/Down key to select an error record. After selecting an error code, press ENTER to see that error record's detail
	Press Up/Down key to see an error record's detail
1: oL V Date: $01 / 20 / 2014$ Time: $21: 02: 24$ Outfreq: 32.61	DCBus voltage.
Fault record $1: 0 \mathrm{~L}$ ث $2: 0 \mathrm{ovd}$ $3: \mathrm{GFF}$	Press Up/Down key to select an error record. After selecting an error code, press ENTER to see that error record's detail
2: ovd Current: 79.57 Voltage: 189.2 BUS Voltage:409.5	Press Up/Down key to see an error record's detail such as date, time, frequency, current, voltage, DCBus voltage.

	2: ovd VDate: $01 / 20 / 2014$ Time: 21:02:24 Outfreq: 32.61
	Fault actions of AC motor drive are record and save to KPC-CC01. When
	KPC-CCO1 is removed and apply to another AC motor drive, the previous fault records will not be deleted. The new fault records of the present AC motor drive will accumulate to KPC-CC01.

5. Display Setup

6. Back-light

Back-Light Min

Back-Light Min

Displ Setup

1:Contrast
$\triangle 2$:Back-Light
3:Text Color

Use Up/Down key to adjust the setting value.

After selecting a setting value. Press ENTER to see screen's display after contrast is adjusted to be +10 .

When the setting value is 0 Min , the back light will be steady on.

Then press ENTER.

After select a setting value Press ENTER to see screen's display result after contrast is adjusted to be -10.

Press ENTER to go to Back Light Time Setting screnn.

Use Up/Down key to adjust the setting value.

When the setting value is 0 Min , the back light will be steady on.

When the setting value is 10 Min , the backlight will be off in 10 minutes.
6. Time Setting

Use Left/Right key to select
Year, Month, Day, Hour, Minute
or Second to set up

Time Setup	Use Up/Down key to set up Year
$\begin{aligned} & 2014 / 01 / 01 \\ & 00: 00: 00 \end{aligned}$	
Time Setup	
$\begin{aligned} & 2014 / 01 / 01 \\ & 00: 00: 00 \end{aligned}$	Use Up/Down key to set up Month
Time Setup	
$\begin{aligned} & 2014 / 01 / 01 \\ & 00: 00: 00 \end{aligned}$	Use Up/Down key to set up day
Time Setup	
$\begin{aligned} & 2014 / 01 / 01 \\ & 21: 00: 00 \end{aligned}$	Use Up/Down key to set up hour
Time Setup	
$\begin{aligned} & 2014 / 01 / 01 \\ & 21: 12: 00 \end{aligned}$	Use Up/Down key to set up Minute
Time Setup	
$\begin{aligned} & 2014 / 01 / 01 \\ & 21: 12: 14 \end{aligned}$	Use Up/Down key to set up Second
Time Setup	
END	After setting up, press ENTER to confirm the setup.
ص, NOTE	
When the digital keypad is removed, the time setting will be in standby status for 7 days. After this period, the time needs to be reset.	

7. Language setup

8. Startup

9. Mian Pge

Default picture and editable picture are available upon selection.

Press ENTER to select.

1. Default page

F 600.00Hz >>> H >>> A >>> U (circulate)
2. User Defined: optional accessory is require (TPEditor \& USB/RS-485 Communication Interface-IFD6530)
Install an editing accessory would allow users to design their own start-up page.If editor accessory is not installed, "user defined" option will dispay a blank page.

$$
\begin{aligned}
& \text { Freq. } \quad 60.00 \mathrm{~Hz} \\
& \text { Current } 123.45 \mathrm{~A} \\
& \text { DC BUS } \begin{array}{|c|c|c|}
543.21 \\
\mathrm{Vdc} \\
\text { 20140206 14: 25:56 }
\end{array}
\end{aligned}
$$

USB/RS-485 Communication Interface-IFD6530
Please refer to Chapter 07 Optional Acessories for more detail.

TPEditor

Go to Delta's website to download TPEditor V1.30.6 or later versions.
http://www.delta.com.tw/ch/product/em/download/download main.asp?act =3\&pid=1\&cid=1\&tpid=3
10. PC Link

Choose <YES> in the <Confirm to Write> dialogue box.

PC Link	
Receiving	Start downloading pages to edit KPC-CC01.
28\%	
PC Link	Download completed
Completed	
100\%	
VFDSoft: this function allows user to link to the VFDSoft Operating software then to upload data	
Copy parameter 1~4 in KPC-CC01	
Connect KPC-CCO1 to a computer	
PC Link	Start downloading pages to edit to KPC-CC01
1TPEditor 4. VFDSoft	
PC Link	Use Up/Down key to select a parameter group to upload to VFDSoft. Press ENTER
A01: C2000_Fan1* 002: C2000_Fan2 003: C2000_Pum1	
PC Link 1: 0	Waiting to connect to PC
Waiting	
0\%	

	Uploading parameter is completed 100\% Before using the user defined starting screen and user defined main screen, the starting screen setup and the main screen setup have to be preset as user defined. If the user defined page are not downloaded to KPC-CC01, the starting screen and the main screen will be blank.

Other Display

When fault occur, the menu will display:

1. Press ENTER and start RESET. If still no response, please contact local distributor or return to the factory. To view the fault DC BUS voltage, output current and output voltage, press "MENU" \rightarrow "Fault Record".
2. Press ENTER again, if the screen returns to main page, the fault is clear.
3. When fault or warning message appears, backlight LED will blinks until the fault or the warning is cleared.

Optional accessory: RJ45 Extension Lead for Digital Keypad

Part No.	Description
CBC-K3FT	RJ45 extension lead, 3 feet (approximately 0.9 m)
CBC-K5FT	RJ45 extension lead, 5 feet (approximately 1.5 m)
CBC-K7FT	RJ45 extension lead, 7 feet (approximately 2.1 m)
CBC-K10FT	RJ45 extension lead, 10 feet (approximately 3 m)
CBC-K16FT	RJ45 extension lead, 16 feet (approximately 4.9 m)

Note: When you need to buy communication cables, buy non-shielded, 24 AWG, 4 twisted pair, 100 ohms communication cables.

9-5 Digital Keypad KPC-CC01 Fault Codes and Descriptions

Fualt Codes:

LCM Display *	Description	Corrective Actions
Fault FrEr kpdFlash Read Er	Keypad flash memory read error	An error has occurred on keypad's flash memory. 1. Press RESET on the keypad to clear errors. 2. Verify what kind of error has occurred on keypad's flash memory. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your authorized local dealer.
Fault ${ }^{\text {FSEr }}$ kpdFlash Save Er	Keypad flash memory save error	An error has occurred on keypad's flash memory. 1. Press RESET on the keypad to clear errors. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your authorized local dealer.
	Keypad flash memory parameter error	Errors occurred on parameters of factory setting. It might be caused by firmware update. 1. Press RESET on the keypad to clear errors. 2. Verify if there's any problem on Flash IC. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
Fault ${ }^{\text {VFDr }}{ }^{\text {HaNo }}$ Read VFD Info Er	Keypad flash memory when read AC drive data error	Keypad can't read any data sent from VFD. 1. Verify if the keypad is properly connect to the motor drive by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
HAND Fault CPUEr CPU Error	and then power on again the system.	A Serious error has occurred on keypad's CPU. 1. Verify if there's any problems on CPU clock? 2. Verify if there's any problem on Flash IC? 3. Verify if there's any problem on RTC IC? 4. Verify if the communication quality of the RS485 is good? 5. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.

Warning Codes:

LCM Display *	Description	Corrective Actions
Warning CE01 Comm Command Er	Modbus function code error	Motor drive doesn't accept the communication command sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. If none of the solution above works, contact your local authorized dealer.
Warning CE02 Comm Address Er	Modbus data address error	Motor rive doesn't accept keypad's communication address. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. If none of the solution above works, contact your local authorized dealer.
Warning CEO3 Comm Data Error	Modbus data value error	Motor drive doesn't accept the communication data sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. If none of the solution above works, contact your local authorized dealer.
Warning CE04 Comm Slave Error	Modbus slave drive error	Motor drive cannot process the communication command sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
Warning CE10 KpdComm Time Out	Modbus transmission time-Out	Motor drive doesn't respond to the communication command sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
Warning TPNO TP No Object	Object not supported by TP Editor	Keypad's TP Editor uses unsupported object. 1. Verify how the TP editor should use that object. Delete unsupported object and unsupported setting. 2. Reedit the TP editor and then download it. If none of the solution above works, contact your local authorized dealer.

File Copy Setting Fault Description

LCM Display *	Description	Corrective Actions
File 1 Err 1 Read Only	Parameter and rile are read only	The property of the parameter/file is read-only and cannot be written to. 1. Verify the specification on the user manual. If the solution above doesn't work, contact your local authorized dealer.
File 1 Hano Err Write Fail	Fail to write parameter and file	An error occurred while write to a parameter/file. 1. Verify if there's any problem on the Flash IC. 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above work, contact your local authorized dealer.
File 1 Err VFD Running	AC drive is in operating status	A setting cannot be made while motor drive is in operation. 1. Verify if the drive is not in operation. If the solution above doesn't work, contact your local authorized dealer.
	AC drive parameter is locked	A setting cannot be made because a parameter is locked. 1. Verify if the parameter is locked or not. If it is locked, unlock it and try to set up the parameter again. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Pr Changing	AC drive parameter changing	A setting cannot be made because a parameter is being modified. 1. Verify if the parameter is being modified. If it is not being modified, try to set up that parameter again. If the solution above doesn't work, contact your local authorized dealer.
	Fault code	A setting cannot be made because an error has occurred on the motor drive. 1. Verify if there's any error occurred on the motor dive. If there isn't any error, try to make the setting again. If the solution above doesn't work, contact your local authorized dealer.
	Warning code	A setting cannot be made because of a warning message given to the motor drive. 1. Verify if there's any warning message given to the motor drive. If the solution above doesn't work, contact your local authorized dealer.
AND \square File 1 Err Type Dismatch	File type dismatch	Data need to be copied are not same type, so the setting cannot be made. 1. Verify if the products' serial numbers need to be copied fall in the category. If they are in the same category, try to make the setting again. If the solution above doesn't work, contact your authorized dealer.
	File is locked with password	A setting cannot be made, because some data are locked. 1. Verify if the data are unlocked or able to be unlocked. If the data are unlocked, try to make the setting again. 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.

LCM Display *	Description	Corrective Actions
File 1 HaNo Err 10 Password Fail	File version dismatch	A setting cannot be made because the password is incorrect. 1. Verify if the password is correct. If the password is correct, try to make the setting again. 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
	AC drive copy function time-out	A setting cannot be made, because the version of the data is incorrect. 1. Verify if the version of the data matches the motor drive. If it matches, try to make the setting again. If none of the solution above works, contact your local authorized dealer.
	Other keypad error	A setting cannot be made, because data copying timeout expired. 1. Redo data copying. 2. Verify if copying data is authorized. If it is authorized, try again to copy data. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
File 1 HaND Krr Keypad Issue	Other AC drive error	This setting cannot be made, due to other keypad issues. (Reserved functions) If such error occurred, contact your local authorized dealer.
	File is locked with password	This setting cannot be made, due to other motor drive issues. (Reserved functions). If such error occurred, conatct your local authorized dealer.

※ The content in this chapter only applies on V1.01 and above of KPC-CC01 keypad.

9-6 TPEditor Installation

TPEditor can edit up to 256 HMI (Human-Machine Interface) pages with a total storage capacity of 256kb.
Each page can edit 50 normal objects and 10 communication objects.

1) TPEditor: Setup \& Basic Functions
1. Run TPEditor version 1.60 or later.

므즐

TPEditor 1.60
2. Go to File(F) \rightarrow Click on New. The Window below will pop up. At the device type, click on the drop down menu and choose DELTA VFD-C Inverter. At the TP type, click on the drop down menu and choose VFD-C KeyPad. As for File Name, enter TPE0. Now click on OK.

Hew Project	
$\begin{gathered} \mathrm{HMI} \Leftrightarrow \text { PLC } \\ \text { SetDevioe Type } \end{gathered}$	
DELTA VFD-C Inventer	\checkmark
TP Type	
VFD-C KeyPad	\checkmark
File Name	
TPEO	
OK	

3. You are now at the designing page. Go to Edit $(E) \rightarrow$ Click on Add a New Page (A) or go to the TP page on the upper right side, right click once on TP page and choose Add to increase one more page for editing. The current firmware of Keypad is version1.00 and can support up to 4 pages.

4. Edit Startup Page

5．Static Text
A．Open a blank page，click once on this button A and then double click on that blank page．The following windows will pop up．

6．Static Bitmap \rightarrow Open a blank page，then click once on this button blank page．The following window will pop up．

Please note that Static Bitmap setting support only images in BMP format．Now choose a image that you need and click open，then that image will appear in the Static Bitmap window．

7．Geometric Bitmap \square \rightarrow As shown in the picture on the left side，there are 11 kinds of geometric bitmap to choose．Open a new blank page then click once on a geometric bitmap icon that you need．Then drag that icon and enlarge it to the size that you need on that blank page．
8. Finish editing the keypad starting screen and select Communication>Input User Defined Keypad Starting Screen.

9. Downloading setting: Go to Tool > Communication. Set up communication port and speed of IFD6530.
10. Only three speed selections are available: 9600 bps, 19200 bps and 38400 bps.

11. When a dialogue box displayed on the screen asking to confirm writing or not, press buttons on the keypad to go to MENU, select PC LINK and then press ENTER and wait for few seconds. Then select YES on the screen to start downloading.

2) Edit Main Page \& Example of Download

1. Go to editing page, select EditàAdd one page or press the button ADD on the right hand side of the HMI page to increase number of pages to edit. This keypad currently support up to 256 pages.

2. On the bottom right-hand corner of the HMI, click on a page number to edit or go to VIEW >HMI page to start editing main page. As shown in the image, the following objects are available. From left to right: Static Text, ASCII Display, Static Bitmap, Scale, Bar Graph, Button, Clock Display, Multi-state bit map, Units, Numeric Input and 11 geometric bitmaps and lines of different width. The application of Static Text, Static Bitmap, and geometric bitmap is the same as the editing startup page.

3. Numric/ASCII Display : To add a Numeric/ASCII Display object to a screen, double click on the object to set up Related Devices, Frame Setting, Fonts and Alignment.

Related Device: Choose the VFD Communication Port that you need, if you want to read output frequency (H), set the VFD Communication Port to $\$ 2202$. For other values, please refer to ACMD ModBus Comm Address List.

4. Scale Setting $\overline{\overline{4 \cdot 1 / 2}}$: On the Tool Bar, click on this $\overline{\overline{4 \cdot \frac{1}{2}}}$ for Scale Setting. You can also edit Scale Setting in the Property Window on the right hand side of your computer screen.

Scale Setting			
Scale Position Scale Side	Top		FontSetting
	Normal Direction		$5 \times 8 \rightarrow$
Value Length	16 Bits	Main Scale	5
Mar Value	100	SubScale	2
Min Value	0	OK	Cancel

a. Scale Position: Click on the drop down list to choose which position that you need to place a scale.
b. Scale Side: Click on the drop down list to choose if you want to number your scale from smaller number to bigger number or from big to small. Click OK to accept this setting or click Cancel to abort.
c. Font Setting: Click on the drop down list to choose the Font setting that you need then click OK to accept the setting or click Cancel to abort.
d. Value Length: Click on the drop down to choose 16bits or 32 bits. Then click OK to accept the setting or click Cancel to abort.
e. Main Scale \& Sub Scale: In order to divide the whole scale into equal parts, key in the numbers of your choices for main scale and sub scale.
f. Maximum value \& Minimum Value are the numbers on the two ends of a scale. They can be negative numbers. But the values allowed to be input are limited by the length of value. For example, when the length of value is set to be hexadecimal, the maximum and the minimum value cannot be input as -4000 .
Follow the Scale setting mentioned above; you will have a scale as shown below.

5. Bar Graph setting

a. Related Device: Choose the VFD Communication Port that you need.
b. Direction Setting: Click on the drop down menu to choose one of the following directions: From Bottom to Top, From Top to Bottom, From Left to Right or From Right to Left.
c. Maximum Value \& Minimum Value: They define the range covered by the maximum value and minimum value. If a value is smaller than or equal to the minimum value, then the bar graph will be blank. If a value is bigger or equal to the maximum value, then the bar graph will be full. If a value is between minimum and maximum value, then the bar graph will be filled proportionally.
6. Button : Currently this function only allows the Keypad to switch pages, other functions are not yet available. Text input function and Image inserted functions are not yet supported.
Double click on 8 to open set up window.

<Button Type> allows users set up buttons' functions. <Page Jump> and <Constant Setting> are the only two currently supported functions.
A [Page Jump] function setting

- Page Jump setting: After you choose the Page Jump function in the drop down list, you will see this Page Jump Setting Menu
- <Function Key> allows you to assign functions to the following keys on the KPC-CC01 keypad: F1, F2, F3, F4, Up, Down, Left and Right. Please note that the Up and Down keys are locked by TPEditor. These two keys cannot be programmed. If you want to program Up and Down keys, go to Tool \rightarrow Function Key Settings $(F) \rightarrow$ Re-Define Up/Down Key(R).

- Button Text: This function allows user to name buttons. For example, key in <Next Page> in the empty space, a button will have the wording <Next Page> displayed on it.
B [Constant setting] function
This function is to set up the memory address' value of the VFD or PLC. When pressing the <function button> set up in before, a value will be written to the memory address of the <Constant Setting>. This function can be used as initializing a variable.

7. Clock Display Setting : The setup window of the Clock Display is shown as the image below. Time, Day or Date can be displayed on the keypad.
Open a new file and click once in that window, you will see the following
In the clock display setting, you can choose to display Time, Day or Date on the Keypad. To adjust time, go to \#9 on the Keypad's menu. You can also adjust Frame Setting, Font Setting and Alignment.

8. Multi-state bitmap : The setup window of the multi-state is shown as the image below. This object reads the bit's property value of the PLC. It defines what image or wording is when this bit is 0 or when this bit is 1 . Set the initial status to be 0 or 1 to define the displayed image or wording.

9. Unit Measurement \mathbb{A} : Click once on this Button:

Open a new file and double click on that window, you will see the following

Units Setting	
Metrology Type	
Unit Name	ms
OK	

Choose from the drop down list the Metrology and the Unity Name that you need.
As for Metrology, you have the following choices Length, Square Measure, Volume/Solid Measure, Weight, Speed, Time and Temperature. The unit name changes automatically when you change metrology type.
10. Numeric Input Setting $\stackrel{\text { 紫 }}{ }$:

This menu allows you to provide parameters or communication ports and to input numbers.
Click once on this button \qquad
Open a new file and double click on that window, you will see the following:

a. Related Device: There are two blank spaces to fill in, one is <Write> and another one is <Read>. Input the numbers that you want to display and the corresponding numbers of a parameter and that of a communication port. For example, input 012C to Read and Write Parameter P01-44.
b. OutLine Setting: The Frame setting, Font setting, Vertical Alignment and Horizontal Alignment are the same as mentioned before. Click on the drop down menu and choose the setting that you need.
c. Function key: The setting here allows you to program keys on the keypad. Press the key on the menu then the corresponding key on the keypad will start to blink, then press Enter to confirm the setting.
d. Value Type \& Value Length: These two factors influence the range of the Minimum and Maximum Value of the Limit Setting. Please note that the corresponding supporting values for C2000 have to be 16bits. The 32bits values are not supported.
e. Value Setting: This part is set automatically by the keypad itself.
f. Limit Setting: Input the range the security setting here.
g. For example, if you set Function Key as F1, Minimum Value as 0 and Maximum Value ias 4, then press F1 on Keypad Then you can press Up and Down key on the keypad to increase or decrease the value. Press Enter Key on the keypad to confirm your setting. You can also go to parameter table 01-44 to verify if your input correctly the value.
11. Download TP Page : Press Up or Down key on the keypad until you reach \#13 PC Link.

Then press Enter on the keypad and you will see the word "Waiting" on keypad's screen. Now choose a page that you have created then go to Communication $(M) \rightarrow$ Write to TP (W) to start downloading the page to the keypad

When you see the word Completed on the keypad's screen, that means the download is done. Then you can press ESC on the keypad to go back to the menu of the keypad.

3) Edit Main Page

1. On the bottom right-hand corner of the HMI, click on a page number to edit or go to VIEW >HMI page to start editing main page. As shown in the image, the following objects are available. From left to right: Static Text, ASCII Display, Static Bitmap, Scale, Bar Graph, Button, Clock Display, Multi-state bit map, Units, Numeric Input and 11 geometric bitmaps and lines of different width. The application of Static Text, Static Bitmap, and geometric bitmap is the same as the editing startup page.

2. Numric/ASCII Display : To add a Numeric/ASCII Display object to a screen, double click on the object to set up Related Devices, Frame Setting, Fonts and Alignment.

Related Device: Choose the VFD Communication Port that you need, if you want to read output frequency (H), set the VFD Communication Port to $\$ 2202$. For other values, please refer to ACMD ModBus Comm Address List.

3. Scale Setting $\frac{\overline{7 \cdot \frac{1}{2}}}{2}$: On the Tool Bar, click on this $\frac{\overline{4 \cdot \frac{1}{2}}}{2}$ for Scale Setting. You can also edit Scale Setting in the Property Window on the right hand side of your computer screen.

Scale Setting			
Scale Position Scale Side	Top		FontSetting
	Normal Direction	\checkmark	5×8 -
Value Length	16 Bis	Main Scale	5
Mar Value	100	SubScale	2
Min Value	0	OK	Canol

i. Scale Position: Click on the drop down list to choose which position that you need to place a scale.
ii. Scale Side: Click on the drop down list to choose if you want to number your scale from smaller number to bigger number or from big to small. Click OK to accept this setting or click Cancel to abort.
iii. Font Setting: Click on the drop down list to choose the Font setting that you need then click OK to accept the setting or click Cancel to abort.
iv. Value Length: Click on the drop down to choose 16bits or 32 bits. Then click OK to accept the setting or click Cancel to abort.
v. Main Scale \& Sub Scale: In order to divide the whole scale into equal parts, key in the numbers of your choices for main scale and sub scale.
vi. Maximum value \& Minimum Value are the numbers on the two ends of a scale. They can be negative numbers. But the values allowed to be input are limited by the length of value. For example, when the length of value is set to be hexadecimal, the maximum and the minimum value cannot be input as -4000 .
Follow the Scale setting mentioned above; you will have a scale as shown below.

4. Bar Graph setting :

i. Related Device: Choose the VFD Communication Port that you need.
ii. Direction Setting: Click on the drop down menu to choose one of the following directions: From Bottom to Top, From Top to Bottom, From Left to Right or From Right to Left.
iii. Maximum Value \& Minimum Value: They define the range covered by the maximum value and minimum value. If a value is smaller than or equal to the minimum value, then the bar graph will be blank. If a value is bigger or equal to the maximum value, then the bar graph will be full. If a value is between minimum and maximum value, then the bar graph will be filled proportionally.
5. Button : Currently this function only allows the Keypad to switch pages, other functions are not yet available. Text input function and Image inserted functions are not yet supported.

Double click on 8 to open set up window.

<Button Type> allows users set up buttons' functions. <Page Jump> and <Constant Setting> are the only two currently supported functions.
A [Page Jump] function setting

- Page Jump setting: After you choose the Page Jump function in the drop down list, you will see this Page Jump Setting Menu
- <Function Key> allows you to assign functions to the following keys on the KPC-CC01 keypad: F1, F2, F3, F4, Up, Down, Left and Right. Please note that the Up and Down keys are locked by TPEditor. These two keys cannot be programmed. If you want to program Up and Down keys, go to Tool \rightarrow Function Key Settings (F) \rightarrow Re-Define Up/Down Key(R).

- Button Text: This function allows user to name buttons. For example, key in <Next Page> in the empty space, a button will have the wording <Next Page> displayed on it.
B [Constant setting] function
This function is to set up the memory address' value of the VFD or PLC. When pressing the <function button> set up in before, a value will be written to the memory address of the <Constant Setting>. This function can be used as initializing a variable.

11. Clock Display Setting : The setup window of the Clock Display is shown as the image below. Time, Day or Date can be displayed on the keypad.

Open a new file and click once in that window, you will see the following
In the clock display setting, you can choose to display Time, Day or Date on the Keypad. To adjust time, go to \#9 on the Keypad's menu. You can also adjust Frame Setting, Font Setting and Alignment.

Clock Display Setting			
	Frane Setting	No Frame	\checkmark
	Font Seting	Alig Left	\checkmark
Time Association © IE Tume	Aligment	$5{ }^{5 \times 8}$	\square
	- Tlme	Day	
r plestine	OK	Canal	

12. Multi-state bitmap : The setup window of the multi-state is shown as the image below. This object reads the bit's property value of the PLC. It defines what image or wording is when this bit is 0 or when this bit is 1. Set the initial status to be 0 or 1 to define the displayed image or wording.

13. Unit Measurement \mathcal{A} : Click once on this Button:

Open a new file and double click on that window, you will see the following

Units Setting	
Metrology Type	
lime	
Unit Name	ms
OK	

Choose from the drop down list the Metrology and the Unity Name that you need.
As for Metrology, you have the following choices Length, Square Measure, Volume/Solid Measure, Weight, Speed, Time and Temperature. The unit name changes automatically when you change metrology type.
14. Numeric Input Setting

This menu allows you to provide parameters or communication ports and to input numbers.
Click once on this button 흐․
Open a new file and double click on that window, you will see the following:

h. Related Device: There are two blank spaces to fill in, one is <Write> and another one is <Read>. Input the numbers that you want to display and the corresponding numbers of a parameter and that of a communication port. For example, input 012C to Read and Write Parameter P01-44.
i. OutLine Setting: The Frame setting, Font setting, Vertical Alignment and Horizontal Alignment are the same as mentioned before. Click on the drop down menu and choose the setting that you need.
j. Function key: The setting here allows you to program keys on the keypad. Press the key on the menu then the corresponding key on the keypad will start to blink, then press Enter to confirm the setting.
k. Value Type \& Value Length: These two factors influence the range of the Minimum and Maximum Value of the Limit Setting. Please note that the corresponding supporting values for C2000 have to be 16bits. The 32bits values are not supported.
I. Value Setting: This part is set automatically by the keypad itself.
m . Limit Setting: Input the range the security setting here.
n. For example, if you set Function Key as F1, Minimum Value as 0 and Maximum Value ias 4, then press F1 on Keypad Then you can press Up and Down key on the keypad to increase or decrease the value. Press Enter Key on the keypad to confirm your setting. You can also go to parameter table 01-44 to verify if your input correctly the value.
15. Download TP Page : Press Up or Down key on the keypad until you reach \#13 PC Link.

Then press Enter on the keypad and you will see the word "Waiting" on keypad's screen. Now choose a page that you have created then go to Communication $(\mathrm{M}) \rightarrow$ Write to $\operatorname{TP}(\mathrm{W})$ to start downloading the page to the keypad
When you see the word Completed on the keypad's screen, that means the download is done. Then you can press ESC on the keypad to go back to the menu of the keypad.

PC Link 1: $\quad 0$
Waiting
0%

10 Auto-tuning Operations

Flow Chart

- Explanations for the Auto-tuning Steps

Step1

Basic Parameters Settings

- Make sure that Pr.00-00 (identity code of the AC motor drive) corresponds with the nameplate indicated on the AC motor drive.

■ Make sure that all parameters are reset to factory setting (Pr.00-02 is set to 9 or 10).

Pr00-02	0: No function
Parameter	1: Read only
Reset	8: Keypad lock
	9: All parameters are reset to factory settings (base frequency $=50 \mathrm{~Hz}$)
	10: All parameters are reset to factory settings (base frequency $=60 \mathrm{~Hz}$)

- Source of the Master Frequency Command: It is user-defined. (Pr.00-14)

Pr00-14 1: RS-485 serial communication or digital keypad (KPC-CC01)
Source of 2: External analog input (Pr. 03-00)
the Master 3: Digital terminals input (Pr04-00 ~ Pr.04-15)
Frequency
Command
■ Source of the Operation Command: It is user-defined. (Pr.00-15)
Pr00-15
Source of
1: External terminals
the operation 2: RS-485 serial communication or digital keypad (KPC-CCO1) frequency

- MI/MO External Terminal Settings:

Refer to Pr.02-01~Pr02-08 for setting of the external input terminals MI1~MI8.
NOTE: The factory setting of Pr.02-08 is 40 (Enable drive function).
Disable this function, if you don't need to use it.

Settings of	0: No function
Pro2-01 to	1: multi-step speed command 1
Prp02-08	2: multi-step speed command 2
	3: multi-step speed command 3
	4: multi-step speed command 4
5: Reset	
6: JOG command	
7: Acceleration/ Deceleration Speed inhibit	
8: the 1st, 2nd acceleration/deceleration time selection	
9: the 3rd, 4th acceleration/deceleration time selection	
10: EF input (07-28)	
11: Reserved	
12: Stop Output	
13: Reserved	
14: Reserved	
15: Operation speed command form AUI1	
16: Reserved	
17: operation speed command form AUI2	
18: Emergency stop (Pr07-28)	
19~23: Reserved	
24: FWD JOG command	

	25: REV JOG command 26: Reserved 27: ASR1/ASR2 selection 28: Emergency stop (EF1) (Motor coasts to stop) 29-30: Reserved 31: High torque bias (by Pr.07-21) 32: Middle torque bias (by Pr.07-22) 33: Low torque bias (by Pr.07-23) 34-37: Reserved 38: Disable write EEPROM function 39: Torque command direction 40: Enable drive function 41: Detection for magnetic contactor 42: Mechanical brake 43: EPS function
Refer to Pr02-15 and Pr02-16 for the settings of MO1~MO8	
$\begin{aligned} & \text { Pro2-15~ } \\ & \text { Pro2-16 } \end{aligned}$	0: No function
	1: Operation indication
	2: Operation speed attained
	3: Desired frequency attained 1 (Pr.02-25)
	4: Desired frequency attained 2 (Pr.02-27)
	5: Zero speed (frequency command)
	6: Zero speed with stop (frequency command)
	7: Over torque (OT1) (Pr.06-05-06-07)
	8: Over torque (OT2) (Pr.06-08~06-10)
	9: Drive ready
	10: User-defined Low-voltage Detection (LV)
	11: Malfunction indication
	12: Mechanical brake release (Pr.02-29, Pr.02-30)
	13: Overheat (Pr.06-14)
	14: Brake chopper signal
	15: Motor-controlled magnetic contactor output
	16: Slip error (0SL)
	17: Malfunction indication
	18: Reserved
	19: Brake chopper output error
	20: Warning output
	21: Over voltage warning
	22: Over-current stall prevention warning
	23: Over-voltage stall prevention warning
	24: Operation mode indication (Pr.00-15 $=0$)
	25: Forward command
	26: Reverse command
	27: Output when current >= Pr.02-33
	28: Output when current < Pr.02-33
	29: Output when frequency >= Pr.02-34
	30: Output when frequency < Pr.02-34
	31-32: Reserved
	33: Zero speed (actual output frequency)
	34: Zero speed with Stop (actual output frequency)
	35: Error output selection 1 (Pr.06-22)
	36: Error output selection 2 (Pr.06-23)
	37: Error output selection 3 (Pr.06-24)
	38: Error output selection 4 (Pr.06-25)
	39: Reserved
	40: Speed attained (including zero speed)
	41: Reserved 42: SO logic A output

Step2

Encoder Settings

- Selection of speed feedback cards

■ Refer to CH 07 Speed Feedback Card Selection. Delta provides 2 kinds of PG card for user to choose, including EMED-PGABD-1 and EMED-PGHSD-1.

Pr10-00	0: No function
Type of PG	1: ABZ
signal	2: ABZ+Hall
	3: SIN/COS + Sinusoidal
	4: SIN/COS + Endat
	5: SIN/COS
	6: SIN/COS + Hiperface

■ Encoder settings: Pr.10-01~Pr.10-02
Detection for the magnetic pole position of motor
The detection method will be different by the setting of Pr.10-00 PG Signal Type.
The detection methods: (refer to Pr.10-00)

- Setting 1 or 5: The AC motor drive will output short circuit to detect the position of the magnetic pole. At this moment, the motor will generate a little noise.
- \quad Setting 2: The AC motor drive will detect the position of the magnetic pole by the UVW signal of PG.
- Setting 3: The AC motor drive will detect the position of the magnetic pole by the sine signal of PG.
- \quad Setting 4: The AC motor drive will detect the position of the magnetic pole by the communication signal of PG.

```
Pr10-01 1~25000
Encoder
Pulse
```

Type of Encoder Input Setting. The setting of this parameter is normally 1, if the motor doesn't run at setting 1 , change to setting 2.

Pr10-02	0: No fucntion
Type of	1: Phase A leads in a forward run command and phase B leads in a reverse
Encoder	run command
Input Setting	2: Phase B leads in a forward run command and phase A leads in a reverse
	run command
	3: Phase A is a pulse input and phase B is a direction input. (low
	input=reverse direction, high input=forward direction) 4: Phase A is a pulse input and phase B is a direction input. (low input=forward direction, high input=reverse direction)
	5: Single-phase input

Step 3

Motor tuning

- Setting the parameters according to the motor type (PM or IM)
- Motor Auto-tuning: When the Source of the Operation Command is set to digital keypad (Pr.00-15=2, refer to step 1)
- Control method: Please set Pr.00-09 to 8.

Pr00-09 0: V/f Control
Contro
Method 1: V/f Control + Encoder (VFPG)
2: Sensorless vector control (SVC)
3: FOC vector control + Encoder (FOCPG)
4: Torque control + Encoder (TQCPG)
8: FOC PM control (FOCPM)

- NOTE: Setting parameter by the motor type (PM or IM).

■ Inputting the nameplate information on the motor into Pr.01-00~01-02

Pr01-00
Maximum Output Frequency

Pr01-01 $0.00 \sim 400.00 \mathrm{~Hz}$

1st Output Frequency Setting 1
(base frequency/ motor rated frequency)

```
Pr.01-02 230V models: 0.0V~255.0V
1st Output Voltage Setting 1 460V models: 0.0V~510.0V
(base voltage/ motor rated
voltage)
```

【IM (Induction Motor】

- Motor Auto-tuning: When the Source of the Operation Command is set to digital keypad (Pr.00-15=2, refer to step 1) and setting Pr.05-00=2

Pr05-00	0: No function
Motor Auto Tuning	1: Rolling test (Rs, Rr, Lm, Lx, no-load current), (Motor runs)
	2: Static Test (Motor doesn't run)

NOTE 1: It doesn't need to release the brake in this auto tuning operation. Please make sure that the electromagnetic valve is ON when it is used between the AC motor drive and motor. When Pr.05-00 is set to 2, no-load current of motor must be entered into Pr.05-05. The warning message "Auto tuning" will be displayed on the digital keypad during tuning until it is finished. Then, the measure result will be saved into Pr.05-06~Pr.05-09.

NOTE 2: It needs to finish motor auto tuning before measuring the angle between magnetic pole and PG origin.

```
Pr05-01 (40~120%)*00-01 Amps
```

Full-load Current of Motor

```
Pr05-02 0.00~655.35kW
```

Rated Power of Motor

```
Pr05-03 0~65535
Rated Speed of Motor(rpm)
```

```
Pr05-04 2~9
```

Number of
Motor Poles

【Permanent Magnet Motor】

- Motor Auto-tuning: When the Source of the Operation Command is set to digital keypad (Pr.00-15=2, refer to step 1) and setting Pr.08-00=2

Pr08-00	0: No function
Motor Auto Tuning	1: Only for the unloaded motor, auto measure the Angle between magnetic pole and PG origin (08-09) 2: For PM parameters
3: Auto measure the Angle between magnetic pole and PG origin (08-09)	

NOTE 1: It doesn't need to release the brake in this auto tuning operation. Please make sure that the electromagnetic valve is ON when it is used between the AC motor drive and motor. The warning message "Auto tuning" will be displayed on the digital keypad during tuning until it is finished. Then, the measure result will be saved into Pr.08-05 and Pr.08-07. (Pr.08-05 is Rs of Motor and Pr.08-07 is Lq of Motor)
NOTE 2: It is recommended to set Pr.08-00 to 1 (unloaded motor) for the most accurate calculation. If it needs to execute this function with loaded motor, please balance the carriage before execution. When Pr. $08-00=1$, please note:

- When executing the function of auto measure the Angle between magnetic pole and PG origin, it is recommended to stop the carriage car at the middle level.
■ Make sure that the electromagnetic valve and mechanical brake are OFF before executing this function.
- When Pr. $08-00=1$, please execute this function with unloaded motor to get the most accurate result. If it needs to execute this function with loaded motor, please balance the carriage before execution. Make sure the balance by releasing the brake manually before running. This balance will affect the accuracy and the accuracy will influence the power efficiency in driving the motor.

NOTE 3: If it doesn't allow balancing carriage in the measured environment, it can set Pr.08-00 to 3 for executing this function. It will have a difference of $15 \sim 30^{\circ}$ by the different encoder type.

- When Pr.08-00 is set to 3 , the driver will execute the function by the setting of Pr.10-00. The difference between Pr.08-00=3 and Pr.08-00=1 is it doesn't need to put the balanced carriage when Pr. $08-00=3$. Besides, the operation status of the motor will be as shown in the above table (Pr.10-00=1, 2, 3 and 5, the motor will run. Pr.10-00=4 and 6 , the motor won't run)
- When Pr.08-00=3, please make sure if the setting of Pr.10-02 is correct. The incorrect setting will result in the wrong position of the magnetic pole and make the wrong angle between magnetic pole and PG origin.
■
NOTE 4: The warning message "Auto tuning" will be displayed on the digital keypad during tuning until it is finished. Then, the measure result will be saved into Pr.08-09.

NOTE 5: If the warning message "Auto Tuning Err" displayed on the digital keypad during tuning due to abnormal drive or human factor, please check if the wiring is correct. When the warning message "PG Fbk Error" displayed on the digital keypad, please change the setting of Pr.10-02 (for example: if it was set to 1 , please change it to 2). When the warning message "PG Fbk Loss" is displayed on the digital keypad, please check the feedback of Z-phase pulse.

Pr.08-01 Full-load Current of Motor	$(40 \sim 120 \%)^{*} 00-01 \mathrm{Amps}$

Pr.08-02 Rated power of Motor	$0.00 \sim 655.35 \mathrm{~kW}$

Pr.08-03 Rated speed of Motor (rpm)	$0 \sim 65535$

Pr.08-04
2~96
Number of Motor Poles

- Measure the angle between magnetic pole and PG origin

It can execute "RUN" by keypad or digital terminals:

1. Using digital keypad: setting Pr.08-00 to 1 and press "RUN" to execute "auto measure the angle between magnetic pole and PG origin". Please note that if the electromagnetic valve and brake are not controlled by the AC motor drive, please release it by manual.
2. Using external terminals: setting Pr.00-14=3 (frequency source) and Pr.00-15=1 (operation source). Please use "inspection" function to execute "auto measure the angle between magnetic pole and PG origin".

For the IM, it doesn't need to detect the position of the magnetic pole, this function (auto measure the Angle between magnetic pole and PG origin) doesn't have to be executed.

Measure the angle between magnetic pole and PG origin: Pr.08-00=1 or 3

Pr.08-00	0: No function
Motor Auto tuning	1: Only for the unloaded motor, auto measure the Angle between magnetic pole and PG origin (08-09)
	2: For PM parameters 3: Auto measure the Angle between magnetic pole and PG origin (08-09)

NOTE: The function of "auto measure the angle between magnetic pole and Pg origin" only can be enabled after finishing motor auto-tuning.

Step 4

Multi-Step Speed setting or Analog setting (Do not wire the two settings at the same time)
A. Multi-step speed settings

- Confirm the total speed steps (high speed, middle speed, low speed, creep, inspection and level auto-learning)
- Make sure that the setting of step speeds and the action of the corresponding terminals of multi-function input commands are correct.
■ Setting multi-step speeds in Pr.04-00 to Pr.04-15

Settings of Pr.04-00 to Pr.04-15	Zero Step Speed Frequency	0.00~400.00Hz
	1st Step Speed Frequency	0.00~400.00Hz
	2nd Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	3rd Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	4th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	5th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	6th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	7th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	8th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	9th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	10th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	11th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	12th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	13th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	14th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$
	15th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$

NOTE: It is recommended to set the max. operating frequency to the half of max. operating frequency before confirming the setting of each step speed and the action of the corresponding terminals of multi-function input commands.

- Setting the acceleration/deceleration with Pr.01-23 and the setting 08 (the 1st, 2nd acceleration/deceleration time selection) and 09 (the 3rd, 4th acceleration/deceleration time selection) of multi-function input command Pr.02-01~02-08.
- Settings of acceleration/deceleration time: Pr.01-12~Pr.01-19

Settings of Pr.01-12 to Pr.01-19	Accel Time 1	$0.00 \sim 600.00 \mathrm{sec}$
	Decel Time 1	$0.00 \sim 600.00 \mathrm{sec}$
	Accel Time 2	$0.00 \sim 600.00 \mathrm{sec}$
	Decel Time 2	$0.00 \sim 600.00 \mathrm{sec}$
	Accel Time 3	$0.00 \sim 600.00 \mathrm{sec}$
	Decel Time 3	$0.00 \sim 600.00 \mathrm{sec}$
	Accel Time 4	$0.00 \sim 600.00 \mathrm{sec}$
	Decel Time 4	$0.00 \sim 600.00 \mathrm{sec}$

NOTE: it is recommended to set the Pr.01-31 (deceleration time) to the small value in the trial run and execute smooth test after all the actions are correct.

■ Settings of S curve: Pr.01-24~Pr.01-30

Settings of Pr.01-24 to Pr.01-30	S-curve for Acceleration Departure Time S1	0.00~25.00 sec
	S-curve for Acceleration Arrival Time S2	0.00~25.00 sec
	S-curve for Deceleration Departure Time S3	0.00~25.00 sec
	S-curve for Deceleration Arrival Time S4	0.00~25.00 sec
	Mode Selection when Frequency < Fmin	0: Output waiting 1: Zero-speed operation 2: Fmin (4th output frequency setting)
	Switch Frequency for S3/S4 Changes to S5	$0.00 \sim 400.00 \mathrm{~Hz}$
	S-curve for Deceleration Arrival Time S5	0.00~25.00 sec

NOTE: it is recommended to set the S curve time to 0 in trial run and execute smooth test after all the actions are correct.

B. Analog setting

1. Set Pr00-14=2, frequency command is assigned by the external analog signal.
2. Set Pr00-15 =1, operating command is assigned by the external terminals.
3. In order to work with the control terminal, set up Pr03-23 or Pr03-24 in accordance with the output mode of the controller
4. Set up Pr03-03, PR03-05 or Pr03-06 to work with the connecting port. Set F to display 0 Hz when the motor drive is going to stop.

Step5

Inerrtia

Pr.11-05
Inertial Ratio

Step 6

Trial run

This step is used to trial run after finishing the settings of Step 1 to Step 5 to check if it runs normally after executing the inspection with the loaded motor. At the same time, please also check if the operations of multi-function output terminals is normal, such as the action of the brake release and electromagnetic valve correspond to the host controller.

It needs to check the switch between each step speed, current value, the noise in the carriage and noise source during operation.

Step 7

Elevator tuning

1. Setting Pr. 11-00 to bit $0=1$

Pr.11-00	Bit 0=0: disable
System control	Bit 0=1: ASR Auto tuning, PDFF enable
	Bit $7=1$: When position control is enabled, it doesn't need to set Pr.07-02 (DC Brake Current Level) Bit $15=0$: when power is applied, it will detect the position of magnetic pole again Bit $15=1:$ when power is applied, it will start from the magnetic pole position of previous power failure

NOTE: bit 15=0, it will detect the position of magnetic pole when the power is applied. (it will detect every time when the power is applied.)
Bit 15=1: when power is applied, it will start from the magnetic pole position of previous power failure. Please make sure that the motor is not manually rotated during power off. If the motor has been rotated during power off, please set Pr.08-10=1 for magnetic pole re-orientation.
2. Smooth test for general operation

- Adjust the setting of Pr.11-05

Pr.11-05 Inertial Ratio	$1 \sim 300 \%$

- Adjust the settings of Pr.11-06 to Pr.11-08

Settings of Pr.11-06 to Pr.11-08	Zero-speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$
	Low-speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$
	High-speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$

3. Start-up adjustment (only for PM)

- Control by the zero-speed position

Setting Pr.11-00, 10-19, 10-22, 10-23, 02-29 and 10-24

Pr.11-00	Bit $0=0$: disable				
System control	Bit $0=1$: ASR Auto tuning, PDFF enable				
Bit $7=1$: When position control is enabled, it doesn't need to set Pr.07-02					
(DC Brake Current Level)					
Bit 15=0: when power is applied, it will detect the position of magnetic					
pole again					
Bit 15=1: when power is applied, it will start from the magnetic pole					
position of previous power failure		$	$	Pr.10-19 Zero Speed Gain (P)	
:---	:---				

NOTE: refer to the explanations in Pr.02-32

Pr. $10-22$ Operation Time of Zero Speed	$0.000 \sim 65.535 \mathrm{sec}$

Pr.10-23	$0.000 \sim 65.535 \mathrm{sec}$
Filter Time of Zero Speed	

Pr.10-24	0: after the brake release set in Pr.02-29
Time for Zero Speed Execution	1: after the brake signal input (Pr.02-01~02-08 is set to 42)

Pr.02-29 Brake Release Delay Time when Elevator Starts	$0.000 \sim 65.000 \mathrm{Sec}$

NOTE: When Pr.10-24=0, the zero speed control needs to be used with Pr.02-29. (refer to the explanations in Pr.02-32)

- Function of the preload input

Connect the signal of the preload signal to the external terminal of the AC motor drive (AUI1) and setting Pr.03-00=11, 07-19=1, 03-03, 03-06 and 03-09.

Pr.03-00	0: No function
Analog Input 1 (AUI1)	1: Frequency command (torque limit under TQR control mode)
	2: Torque command (torque limit under speed mode)
	3: Torque compensation command 4-5: Reserved 6: P.T.C.7: Positive tormistor input value limit 9: Regenerative torque lorque limit 10: Positive/negative torque limit

Pr.07-19	0: Disable
Source of Torque Offset	1: Analog input (Pr.03-00)
	2: Torque offset setting (Pr.07-20)
	3: Control by external terminal (by Pr.07-21 to Pr.07-23)

Pr.03-03	$-100.0 \sim 100.0 \%$
Analog Input Bias 1 (AUI1)	

Pr.03-06	0: Zero bias
Positive/negative Bias Mode	1: Lower than bias=bias
(AUI1)	2: Greater than bias=bias
	3: The absolute value of the bias voltage while serving as the center
	4: Serve bias as the center

Pr.03-09 Analog Input Gain 1 (AUI1)	$-500.0 \sim 500.0 \%$

NOTE: Pr.03-03, 03-06 and 03-09 are used to adjust the analog input signal.

07-19: Source of torque offset
03-00~02: Analog input selections (AUI1/ACI/AUI2)
03-03~05: Analog input bias (AUI1/ACI/AUI2)
03-06~08: AUI1/ACI/A UI2 bias mode

4. Setting of drive stop

Adjusting Pr.01-29, Pr.01-30, Pr.01-31 and Pr.11-06

Pr.01-29 Switch Frequency for S3/S4 Changes to S5	$0.00 \sim 400.00 \mathrm{~Hz}$

Pr.01-30 S-curve for Deceleration Arrival Time S5	$0.00 \sim 25.00 \mathrm{sec}$

Pr.11-06 Zero-speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$

Pr.01-31 Deceleration Time	$0.00 \sim 600.00 \mathrm{sec}$

11 Summary of Parameter Settings

This chapter provides summary of parameter settings for user to gather the parameter setting ranges, factory settings and set parameters. The parameters can be set, changed and reset by the digital keypad.
司, NOTE

1) \mathbb{N} : the parameter can be set during operation
2) For more detail on parameters, please refer to Ch12 Description of Parameter Settings.

00 Drive Parameters

IM: Induction Motor; PM: Permanent Magnet Motor									
Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{1}{>}$	$\stackrel{0}{0}$	$\begin{aligned} & \text { U } \\ & \text { 心 } \end{aligned}$	O 0 0 0 0 4	0 0 0 0 1 1	\sum 0 0 0 4
00-00	Identity Code of the AC Motor Drive	```108: 220V, 3HP (single phase) 110: 220V, 5HP (Single phase) 8: 230V, 3HP 10: 230V, 5HP 11 : 460 V , 5 HP (4.0kW) 12: 230V, 7.5HP \(13: 460 \mathrm{~V}, 7.5 \mathrm{HP}\) 14: 230V, 10HP 15 : 460V, 10HP 16:230V, 15HP 17 : 460V, 15HP 18:230V, 20HP 19 : 460V, 20HP 20: 230V, 25HP 21 : 460V, 25 HP 22 : 230V, 30HP 23: 460V, 30HP 24 : 230V, 40HP 25: 460V, 40HP 26:230V, 50HP 27: 460V, 50HP 29: 460V, 60HP 31 : 460V, 75HP 33 : 460V, 100HP```	Read Onlty	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
00-01	Display AC Motor Drive Rated Current	Display by models	Read only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
00-02	Parameter Reset	0: No function 1: Read only 8: No function 9: All parameters are reset to factory settings(base frequency is 50 Hz) 10: All parameters are reset to factory settings (base frequency is 60 Hz	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

	Pr.	Explanation	Setting Range	Factory Setting	>	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & > \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { 心 } \end{aligned}$	$\begin{aligned} & \text { O } \\ & 0 \\ & U \\ & 0 \\ & \text { H } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	\sum 0 0 0 4
N	00-03	Start-up Display Selection	0 : Frequency command 1: Output frequency 2: DC BUS voltage 3: Output current 4: Output voltage 5: User defined (00-04)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	00-04	Content of Multi-function Display	0: Display output current (A) (Unit: Amps) 1: Reserved 2: Display actual output frequency (H.) (Unit: Hz) 3: Display DC-BUS voltage (v) (Unit: Vdc) 4: Display output voltage (E) (Unit: Vac) 5: Display output power angle (n) (Unit: deg) 6: Display output power in kW (P) (Unit: kW) 7: Display actual motor speed rpm (r) (Unit: rpm) 8: Display estimate output torque \% (t) (Unit: \%) 9: Display PG feedback (G) (refer to Pr.10-00,10-01) (Unit: PLS) 10: Display PID feedback (b) (Unit: \%) 11: Display AUI1 in \% (1.) (Unit: \%) 12: Reserved 13: Display AUI2 in \% (2.) (Unit: \%) 14: Display the temperature of heat sink in ${ }^{\circ} \mathrm{C}$ (c.) (Unit: ${ }^{\circ} \mathrm{C}$) 15: Display the temperature of IGBT in ${ }^{\circ} \mathrm{C}$ (c.) (Unit: ${ }^{\circ} \mathrm{C}$) 16: The status of digital input (ON/OFF) (i) 17: The status of digital output (ON/OFF) (o) 18: Multi-step speed (S) 19: The corresponding CPU pin status of digital input (d)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

			20: The corresponding CPU pin status of digital output (0.) 21~23: Reserved 24: AC output voltage when error occured 25: DC-side voltge when error occurd 26: Motor's frequency when error occured 27: Outout current when error occured 28: Outpout frequency when error occured 29: Frequency command when error occured 30: Output power when error occured 31: Outpout torque when error occured 32: Input terminal status when error occured 33: Output terminal status when error occured 34: Status of motor drive when error occured 35: Display MI status \& MO status on LED keypad.							
N	00-05	User-Defined Coefficient K	Digit 4: decimal point number (0 to 3) Digit 3-0: 40 to 9999	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	00-06	Software Version	READ ONLY	\#.\#	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	00-07	Password Input	1 to 9998 and 10000 to 65535 0 to 2: times of wrong password	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	00-08	Password Set	1 to 9998 and 10000 to 65535 0: No password set or successful input in Pr.00-07 1: Password has been set	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	00-09	Control Method	0: V/f Control 1: V/f Control + Encoder (VFPG) 2: Sensorless vector control (SVC) 3: FOC vector control + Encoder (FOCPG) 4: Torque control + Encoder (TQCPG) 8: FOC PM control (FOCPM)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	00-10	Speed Unit	$\begin{aligned} & 0: \mathrm{Hz} \\ & 1: \mathrm{m} / \mathrm{s} \\ & \text { 2: ft/s } \end{aligned}$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	00-11	Output Direction Selection	0: FWD: counterclockwise, REV: clockwise 1: FWD: clockwise, REV: counterclockwise	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	00-12	Carrier Frequency	$2 \sim 15 \mathrm{KHz}$	12	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	00-13	Auto Voltage Regulation (AVR) Function	0: Enable AVR 1: Disable AVR 2: Disable AVR when deceleration stop	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
-	00-14	Source of the Master Frequency Command	1: RS-485 serial communication or digital keypad (KPc-CC01) 2: External analog input (Pr. 03-00) 3: Digital terminals input (Pr. 04-00~04-15)	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
\checkmark	00-15	Source of the Operation Command	1: External terminals 2: RS-485 serial communication or digital keypad (KPC-CC01)	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

02 Basic Parameters

	Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{1}{>}$	$\xrightarrow{0}$	$\begin{aligned} & \text { U } \\ & \text { 心 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { un } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	\sum 0 0 0 4
	01-00	Maximum Output Frequency	$10.00 \sim 400.00 \mathrm{~Hz}$	$\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	01-01	1st Output Frequency Setting 1 (base frequency /motor's rated frequency)	$0.00 \sim 400.00 \mathrm{~Hz}$	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	01-02	1st Output Voltage Setting 1 (base voltage/ motor's rated voltage)	$\begin{aligned} & \text { 230V serie: } 0.0 \mathrm{~V} \sim 255.0 \mathrm{~V} \\ & 460 \mathrm{~V} \text { serie: } 0.0 \mathrm{~V} \sim 510.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 220.0 \\ & 440.0 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	01-03	$2^{\text {nd }}$ Output Frequency Setting 1	0.00~400.00Hz	0.50	\bigcirc	\bigcirc				
	01-04	$2^{\text {nd }}$ Output Voltage Setting 1	$\begin{aligned} & \text { 230V serie: } 0.0 \mathrm{~V} \sim 255.0 \mathrm{~V} \\ & 460 \mathrm{~V} \text { serie: } 0.0 \mathrm{~V} \sim 510.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$	\bigcirc	\bigcirc				
	01-05	$3{ }^{\text {rd }}$ Output Frequency Setting 1	$0.00 \sim 400.00 \mathrm{~Hz}$	0.50	\bigcirc	\bigcirc				
	01-06	$3^{\text {rd }}$ Output Voltage Setting 1	230V serie: $0.0 \mathrm{~V} \sim 255.0 \mathrm{~V}$ 460 V serie: $0.0 \mathrm{~V} \sim 510.0 \mathrm{~V}$	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$	\bigcirc	\bigcirc				
	01-07	$4^{\text {th }}$ Output Frequency Setting 1	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	01-08	$4^{\text {th }}$ Output Voltage Setting 1	230V serie: $0.0 \mathrm{~V} \sim 255.0 \mathrm{~V}$ 460 V serie: $0.0 \mathrm{~V} \sim 510.0 \mathrm{~V}$	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$	\bigcirc	\bigcirc				
	01-09	Starting Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.50	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	01-10	Output Frequency Upper Limit	$0.00 \sim 400.00 \mathrm{~Hz}$	120.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-11	Output Frequency Lower Limit	0.00~400.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-12	Accel Time 1	0.00~600.00 sec.	3.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-13	Decel Time 1	0.00~600.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-14	Accel Time 2	0.00~600.00 sec	3.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-15	Decel Time 2	0.00~600.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-16	Accel Time 3	0.00~600.00 sec	3.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-17	Decel Time 3	0.00~600.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-18	Accel Time 4	0.00~600.00 sec	3.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-19	Decel Time 4	0.00~600.00 sec	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-20	JOG Acceleration Time	0.00~600.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-21	JOG Deceleration Time	0.00~600.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-22	JOG Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	6.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	01-23	Switch Frequency between 1st/4th Accel/decel	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-24	S-curve for Acceleration Departure Time S1	0.00~25.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
\checkmark	01-25	S-curve for Acceleration Arrival Time S2	0.00~25.00 sec	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	01-26	S-curve for Deceleration Departure Time S3	0.00~25.00sec.	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
,	01-27	S-curve for Deceleration Arrival Time S4	0.00~25.00sec.	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-28	Mode of Selection when Frequency < Fmin	0: Output waiting 1: Zero-speed operation 2: Fmin (4th output frequency setting)	1	\bigcirc	\bigcirc	\bigcirc			
N	01-29	Switch Frequency for S3/S4 Changes to S5	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	01-30	S-curve for Deceleration Arrival Time S5	0.00~25.00sec.	1.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc

11 Summary of Parameter Settings
01-31 Deceleration Time when 0.00~600.00sec. Operating without RUN Command

02 Digital Input/ Output Parametes

Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{\text { 上 }}{ }$	$\begin{aligned} & 0 \\ & 01 \\ & \gg \end{aligned}$	$\underset{\omega}{u}$	O	O	\sum $\substack{\text { O } \\ \text { O } \\ \text { O } \\ \text { U }}$
02-00	2-wire/3-wire Operation Control	0: FWD/STOP, REVISTOP 1: FWD/STOP, REVISTOP (Line Start Lockout) 2: RUN/STOP, REV/FWD 3: RUN/STOP, REV/FWD (Line Start Lockout) 4: 3-wire 5: 3-wire (Line Start Lockout)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
02-01	Multi-Function Input Command 1 (MI1) (it is Stop terminal for 3-wire operation)	0 : no function	1	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		1: multi-step speed command 1		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-02	Multi-Function Input Command 2 (MI2)	2: multi-step speed command 2	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-03	Multi-Function Input Command 3 (MI3)	3: multi-step speed command 3	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-04	Multi-Function Input Command 4 (MI4)	4: multi-step speed command 4	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-05	Multi-Function Input Command 5 (MI5)	5: Reset	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
02-06	Multi-Function Input Command 6 (MI6)	6: JOG command	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-07	Multi-Function Input Command 7 (MI7)	7: acceleration/deceleration speed inhibit	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
02-08	Multi-Function Input Command 8 (MI8)	8: the 1st, 2nd acceleration/deceleration time selection	40	\bigcirc	\bigcirc	\bigcirc	\bigcirc		00
		9: the 3rd, 4th acceleration/deceleration time selection		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		10: EF input (07-28)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		11: Reserved							
		12: Stop output		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		13~14: Reserved							
		15: operation speed command form AUI1		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		16: Reserved							
		17: Operation speed command form AUI2		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		18: Emergency Stop (07-28)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		19~23: Reserved							
		24: FWD JOG command		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		25: REV JOG command		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		26: Reserved							
		27: ASR1/ASR2 selection		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
		28: Emergency stop (EF1) (Motor coasts to stop)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		29-30: Reserved							
		31: High torque bias (by Pr.07-21)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		32: Middle torque bias (by Pr.07-22)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		33: Low torque bias (by Pr.07-23)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		34-37: Reserved							
		38: Disable write EEPROM function		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		39: Torque command direction						\bigcirc	
		40: Enable drive function		\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc
		41: Detection of magnetic contactor		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		42: Mechanical brake		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		43: EPS function		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

		Attained 1								
N	02-26	The Width of the Desired Frequency Attained 1	$0.00 \sim 400.00 \mathrm{~Hz}$	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	02-27	Desired Frequency Attained 2	$0.00 \sim 400.00 \mathrm{~Hz}$	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	02-28	The Width of the Desired Frequency Attained 2	$0.00 \sim 400.00 \mathrm{~Hz}$	2.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	02-29	Brake Release Delay Time when Elevator Starts	0.000~65.000sec.	0.250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	02-30	Brake Engage Delay Time when Elevator Stops	0.000~65.000sec.	0.250	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	02-31	Turn On Delay of Magnetic Contactor between Drive and Motor	0.000~65.000sec.	0.200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	02-32	Turn Off Delay of Magnetic Contactor between Drive and Motor	0.000~65.000sec.	0.200	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	02-33	Output Current Level Setting for External Terminals	0~100\%	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	02-34	Output Boundary for External Terminals	$0.00 \sim+-400.00 \mathrm{~Hz}$ (it is motor speed when using with PG)	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	02-35	Detection Time of Mechanical Brake	$0.00 \sim 10.00 \mathrm{sec}$.	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	02-36	Detection Time of Contactor	$0.00 \sim 10.00 \mathrm{sec}$.	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	02-37	Check Torque Output Function	0: Enable 1: Disable	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

03 Analog Input/Output Parameter

			19-20: Reserved							
N	03-18	Analog Output Gain 1	0~200.0\%	100.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	03-19	Analog Output Value in REV Direction 1	0 : Absolute value in REV direction 1: Output OV in REV direction 2: Enable output voltage in REV direction	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	03-20	Analog Output Selection 2	0: Output frequency (Hz)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			1: Frequency command (Hz)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			2: Motor speed (RPM)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			3: Output current (rms)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			4: Output voltage		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			5: DC Bus Voltage		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			6: Power factor		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			7: Power		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			8: Output torque		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			9: AVI		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			10: ACI							
			11: AUI		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			12: q-axis current		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			13: q-axis feedback value		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			14: d-axis current		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			15: d-axis feedback value		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			16: q-axis voltage		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			17: d-axis voltage		O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			18: Torque command		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			19-20: Reserved							
N	03-21	Analog Output Gain 2	0~200.0\%	100.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	03-22	Analog Output Value in REV Direction 2	0 : Absolute value in REV direction 1: Output OV in REV direction 2: Enable output voltage in REV direction	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	03-23	Analog Input Type (AUI1)	$\begin{aligned} & \text { 0: Bipolar }(\pm 10 \mathrm{~V}) \\ & \text { 1: Unipolar }(0-10 \mathrm{~V}) \end{aligned}$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	03-24	Analog Input Type (AUI2)	$\begin{aligned} & \text { 0: Bipolar }(\pm 10 \mathrm{~V}) \\ & \text { 1: Unipolar }(0-10 \mathrm{~V}) \end{aligned}$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

04 Multi-Step Speed Parameters

	Pr.	Explanation	Setting Range	Factory Setting	>	$\stackrel{\text { O }}{\substack{1 \\>}}$	U	O 0 0 0 4	O	\sum 0 U U
N	04-00	Zero Step Speed Frequency	0.00~400.00Hz	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-01	1st Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-02	2nd Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-03	3rd Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-04	4th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-05	5th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-06	6th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-07	7th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-08	8th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-09	9th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-10	10th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-11	11th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-12	12th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-13	13th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-14	14th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	04-15	15th Step Speed Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc

05 IM Parameters

06 Protection Parameters

	Pr.	Explanation	Setting Range	Factory Setting	>	$\xrightarrow{0}$	$\underset{\sim}{u}$	O 0 4	O	\sum 0 0 U
N	06-00	Low Voltage Level	$\begin{aligned} & 160.0 \sim 220.0 \mathrm{Vdc} \\ & 320.0 \sim 440.0 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 180.0 \\ & 360.0 \end{aligned}$	\bigcirc	\bigcirc	○	\bigcirc	-	\bigcirc
N	06-01		0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-02	Phase-loss Protection	00: disable $00 \sim 250 \%$	00	\bigcirc	\bigcirc	\bigcirc			
N	06-03	Over-current Stall Prevention during Acceleration	00: disable 00~250\%	00	\bigcirc	\bigcirc	\bigcirc			
N	06-04	Over-current Stall Prevention during Operation	0: by current accel/decel time 1: by the 1st accel/decel time 2: by the 2nd accel/decel time 3: by the 3rd accel/decel time 4: by the 4th accel/decel time 5: by auto accel/decel time	0	\bigcirc	\bigcirc	\bigcirc			
N	06-05	Accel./Decel. Time Selection of Stall Prevention at constant speed	0 : disable 1: over-torque detection during constant speed operation, continue to operate after detection 2: over-torque detection during constant speed operation, stop operation after detection 3: over-torque detection during operation, continue to operate after detection 4: over-torque detection during operation, stop operation after detection	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-06	Over-torque Detection Selection (OT1)	10~250\%	150	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-07	Over-torque Detection Level (OT1)	0.0~60.0sec.	0.1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-08	Over-torque Detection Time (OT1)	0 : disable 1: over-torque detection during constant speed operation, continue to operate after detection 2: over-torque detection during constant speed operation, stop operation after detection 3: over-torque detection during operation, continue to operate after detection 4: over-torque detection during operation, stop operation after detection	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-09	Over-torque Detection Selection (OT2)	10~250\%	150	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-10	Over-torque Detection Level (OT2)	0.0~60.0sec.	0.1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-11	Over-torque Detection Time (OT2)	0~250\%	200				\bigcirc	\bigcirc	\bigcirc
	06-12	Current Limit	0: Inverter motor 1: Standard motor 2: Disable	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-13	Electronic Thermal Relay Selection	30.0~600.0sec.	60.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-14	Electronic Thermal Characteristic	$0.0 \sim 110.0^{\circ} \mathrm{C}$	85.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-15	Heat Sink Over-heat (OH) Warning	0~100\% (Refer to Pr06-02, Pr06-03)	50	\bigcirc	\bigcirc	\bigcirc			
	06-16	Stall Prevention Limit	0: No fault	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

	Level								
06-17	Present Fault Record	1: Over-current during acceleration (ocA)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-18	Second Most Recent Fault Record	2: Over-current during deceleration (ocd)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-19	Third Most Recent Fault Record	3: Over-current during constant speed (ocn)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-20	Fourth Most Recent Fault Record	4: Ground fault (GFF)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
06-21	Fifth Most Recent Fault Record	5: IGBT short-circuit (occ) 6: Over-current at stop (ocS) 7: Over-voltage during acceleration (ovA) 8: Over-voltage during deceleration (ovd) 9: Over-voltage during constant speed (ovn) 10: Over-voltage at stop (ovS) 11: Low-voltage during acceleration (LvA) 12: Low-voltage during deceleration (Lvd) 13: Low-voltage during constant speed (Lvn) 14: Low-voltage at stop (LvS) 15: Phase loss (PHL) 16: IGBT heat sink over-heat (oH 1) 17: Heat sink over-heat (oH2)(for 40HP above) 18: TH1 open loop error (tH1o) 19: TH2 open loop error (tH2o) 20: Fan error signal output	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		21: over-load (150\% 1Min) 22: Motor over-load (EoL1) 23: Reserved 24: Motor PTC overheat (oH3) 25: Reserved 26: over-torque 1 (ot1) 27: over-torque 1 (ot2) 28: Reserved 29: Reserved 30: Memory write-in error (cF1) 31: Memory read-out error (cF2) 32: Isum current detection error (cd0) 33: U-phase current detection error (cd1) 34: V-phase current detection error (cd2) 35: W-phase current detection error (cd3) 36: Clamp current detection error (HdO) 37: Over-current detection error (Hd1) 38: Over-voltage detection error (Hd 2) 39: Ground current detection error (Hd3) 40: Auto tuning error (AuE) 41: PID feedback loss (AFE) 42: PG feedback error (PGF1) 43: PG feedback loss (PGF2) 44: PG feedback stall (PGF3) 45: PG slip error (PGF4) 46: PG ref input error (PGr1) 47: PG ref loss (PGr2) 48: Analog current input error (ACE) 49: External fault input (EF) 50: Emergency stop (EF1) 51: Reserved 52: Password error (PcodE) 53: Reserved 54: Communication error (cE1) 55: Communication error (CE2) 56L Communication error (CE3) 57: Communication error (cE4) 58: Communication Time-out (cE10) 59: PU time-out (cP10) 60: Brake chopper error (bF)							

			61-62: Reserved 63: Safety loop error (Sry) 64: Mechanical brake error (MBF) 65: PGF5 hardware error 66: Magnetic contactor error 67: Phase loss of drive output (MPHL) 68: CAN Bus disconnected 69: Safety Torque Off (STO) 70: Channel 1(STO1~SCM1) abnormal safety circuit 71: Channel 2(STO2~SCM2) abnormal safety circuit 72: Abnormal internal circuit							
N	06-22	Fault Output Option 1	0~65535 (refer to bit table for fault code)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-23	Fault Output Option 2	0~65535 (refer to bit table for fault code)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-24	Fault Output Option 3	0~65535 (refer to bit table for fault code)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-25	Fault Output Option 4	0~65535 (refer to bit table for fault code)	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-26	PTC (Positive Temperature Coefficient) Detection Selection	0 : Warn and keep operation 1: Warn and ramp to stop	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-27	PTC Level	0.0~100.0\%	50.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-28	Filter Time for PTC Detection	$0.00 \sim 10.00 \mathrm{sec}$.	0.20	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-29	Voltage of Emergency Power	$\begin{aligned} & 48.0 \sim 375.0 \mathrm{Vdc} \\ & 96.0 \sim 750.0 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 48.0 \\ & 96.0 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-30	Setting Method of Fault Output	0: By settings of Pr.06-22~06-25 1: By the binary setting	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-31	Phase Loss Detection of Drive Output at Start up(MPHL)	0: Disable 1: Enable	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-32	Accumulative Drive Power-on Time at the First Fault (min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-33	Accumulative Drive Power-on Time at the First Fault (day)	00-65535	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-34	Accumulative Drive Power-on Time at the Second Fault (min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-35	Accumulative Drive Power-on Time at the Second Fault (day)	00-65535	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-36	Accumulative Drive Power-on Time at the Third Fault (min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-37	Accumulative Drive Power-on Time at the Third Fault (day)	00-65535	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-38	Accumulative Drive Power-on Time at the Fourth Fault (min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-39	Accumulative Drive Power-on Time at the Fourth Fault (day)	00-65535	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-40	Accumulative Drive Power-on Time at the Fifth Fault (min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-41	Accumulative Drive Power-on Time at the Fifth Fault (day)	00-65535	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-42	Accumulative Drive Power-on Time at the Sixth Fault (min.)	00~1439	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	06-43	Accumulative Drive Power-on Time at the	00-65535	00	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

		Sixth Fault (day)								
N	06-44	Operation Speed of Emergency Power Mode	0.00~400.00Hz	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-45	Low-voltage Protection	$\begin{aligned} & \text { Bit0 = 0: Display Lv fault and coast to stop } \\ & \text { Bit0 = 1: Display Lv warn and coast to stop } \\ & \text { Bit1 = 0: Fan lock, fault and coast to stop } \\ & \text { Bit1 = 1: Fan lock, warn and coast to stop } \end{aligned}$	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-46	Operation Direction for Emergency Power ON	0 : Run by following the current command 1: Run by following the direction of power generating mode. 2: After determining the direction of power generating, the host computer sends the operating direction command. (When at STOP mode determine the direction of power generating mode $(\mathrm{MO}=32)$ but do not retain the direction of the power generating.) 3. After determining the direction of power generating, the host computer send the operating direction command. (When at STOP mode, determine the direction of power generating mode ($\mathrm{MO}=32$) and retain the direction of the power generating.)	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	06-47	Power Generation Direction Searching Time	$0.0 \sim 5.0 \mathrm{sec}$.	1.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-48	Power Capacity of Emergency Power	$0.0 \sim 100.0$ kVA	0.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	06-49	STO Latch Selection	0: STO Latch 1: STO No Latch	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

07 Speical Parameters

	Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{1}{>}$	$\xrightarrow{0}$	$\begin{aligned} & \text { U } \\ & \text { 心 } \end{aligned}$	U 0 0 0 4	O	\sum 0 0 0 4
N	07-00	Brake Chopper Level	230V serie: 350.0~450.0Vdc 460V serie: 700.0~900.0Vdc	$\begin{aligned} & 380.0 \\ & 760.0 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	07-01	Reserved								
N	07-02	Brake Chopper Level	0~100\%	0	\bigcirc	\bigcirc	\bigcirc			
N	07-03	Brake Chopper Level	0.0~60.0sec.	0.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	07-04	Brake Chopper Level	0.0~60.0sec.	0.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	07-05	Brake Chopper Level	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
N	07-06	Brake Chopper Level	1~500	50	\bigcirc	\bigcirc	\bigcirc			
N	07-07	Brake Chopper Level	0.00~600.00sec.	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	07-08	Brake Chopper Level	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	07-09	Brake Chopper Level	0.00~600.00sec.	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	07-10	Brake Chopper Level	$0.00 \sim 400.00 \mathrm{~Hz}$	0.00	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
N	07-11	Cooling Fan Control	0 : Coolign fan always ON 1: 1 minute after AC motor drive stops, cooling fan will be OFF 2: AC motor drive runs and cooling fan ON, AC motor drive stops and cooling fan OFF 3: Cooling fan ON to run when preliminary heat sink temperature attained 4: Cooling always OFF	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-12	Torque command	-100.0~100.0\% (Pr07-14 setting =100\%)	0.0					\bigcirc	
N	07-13	Source of Torque Command	0: Digital keypad (KPC-CC01) 1: RS485 serial communication (RJ-11) 2: Analog signal (Pr.03-00)	2					\bigcirc	
N	07-14	Maximum Torque Command	0~300\%	100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-15	Filter Time of Torque Command	0.000~1.000sec.	0.000					\bigcirc	
	07-16	Speed Limit Selection	0: By Pr.07-17 and Pr.07-18 1: Frequency command source (Pr.00-14)	0					\bigcirc	
N	07-17	Torque Mode +Speed Limit	0~120\%	10					\bigcirc	
N	07-18	Torque Mode-Speed Limit	0~120\%	10					\bigcirc	
N	07-19	Source of Torque Offset	0: Disable 1: Analog input (Pr.03-00) 2: Torque offset setting (Pr.07-20) 3: Control by external terminal (by Pr.07-21 to Pr.07-23)	0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-20	Torque Offset Setting	0.0~100.0\%	0.0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-21	High Torque Offset	0.0~100.0\%	30.0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-22	Middle Torque Offset	0.0~100.0\%	20.0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-23	Low Torque Offset	0.0~100.0\%	10.0			\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-24	Forward Motor Torque Limit	0~300\%	200				\bigcirc	\bigcirc	\bigcirc
N	07-25	Forward Regenerative Torque Limit	0~300\%	200				\bigcirc	\bigcirc	\bigcirc

N	07-26	Reverse Motor Torque Limit	0~300\%	200				\bigcirc	\bigcirc	\bigcirc
N	07-27	Reverse Regenerative Torque Limit	0~300\%	200				\bigcirc	\bigcirc	\bigcirc
N	07-28	Emergency Stop (EF) \& Forced Stop Selection	0: Coast to stop 1: By deceleration Time 1 2: By deceleration Time 2 3: By deceleration Time 3 4: By deceleration Time 4 5: By Pr.01-31	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	07-29	Time for Decreasing Torque at Stop	0.000~1.000sec.	0.000				\bigcirc	\bigcirc	\bigcirc

08 PM Parameters

Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{1}{>}$	0 0 \square $>$	$\begin{aligned} & \text { U } \\ & \text { 心 } \end{aligned}$	O	U	\sum 0 0 0 4
08-00	Motor Auto Tuning	0: No function 1: Only for the unloaded motor, auto measure the angle between magnetic pole and PG origin (08-09) 2: For PM parameters 3: Auto measure the angle between magnetic pole and PG origin (08-09)	0						\bigcirc
08-01	Full-load Current of Motor	(40~120\%) *00-01 Amps	\#.\#\#						\bigcirc
08-02	Rated power of Motor	0.00~655.35kW	\#.\#\#						\bigcirc
08-03	Rated speed of Motor (rpm)	0~65535	1710						\bigcirc
08-04	Number of Motor Poles	2~96	4						\bigcirc
08-05	Rs of Motor	0.000~65.535	0.000						\bigcirc
08-06	Ld of Motor	$0.0 \sim 6553.5 \mathrm{mH}$	0.0						\bigcirc
08-07	Lq of Motor	$0.0 \sim 6553.5 \mathrm{mH}$	0.0						\bigcirc
08-08	Back Electromotive Force	0.0~6553.5Vrms	0.0						\bigcirc
08-09	Angle between Magnetic Pole and PG Origin	$0.0 \sim 360.0^{\circ}$	360.0						\bigcirc
08-10	Magnetic Pole Re-orientation	0: Disable 1: Enable	0						\bigcirc

09 Comminication Parameters

	Pr.	Explanation	Setting Range	Factory Setting)	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { 心 } \end{aligned}$	0 0 0 0 4	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & O^{\prime} \end{aligned}$	\sum 0 0 0 4
N	09-00	Communication Address	1~254	1						
N	09-01	Transmission Speed	4.8~115.2Kbps	9.6	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	09-02	Transmission Fault Treatment	0 : Warn and keep operation 1: Warn and ramp to stop 2: Reserved 3: No action and no display	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	09-03	Time-out Detection	$0.0 \sim 100.0 \mathrm{sec}$.	0.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	09-04	Communication Protocol	0: 7N1 (ASCII) 1: 7N2 (ASCII) 2: 7E1 (ASCII) 3: 701 (ASCII) 4: 7E2 (ASCII) 5: 702 (ASCII) 6: 8N1 (ASCII) 7: 8N2 (ASCII) 8: 8E1 (ASCII) 9: 801 (ASCII) 10: 8E2 (ASCII) 11: 802 (ASCII) 12: 8N1 (RTU) 13: 8N2 (RTU) 14: 8E1 (RTU) 15: 801 (RTU) 16: 8E2 (RTU) 17: 802 (RTU)	13	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	09-05	Response Delay Time	0.0~200.0ms	2.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

10 Speed Feedback Control Parameters

	Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{4}{>}$	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \gg \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { u } \end{aligned}$	U 0 0 0 4	O	\sum 0 0 0 4
	10-00	Selection of Encoder	0: No function 1: ABZ 2: ABZ+Hall 3: SIN/COS + Sinusoidal 4: SIN/COS + Endat 5: SIN/COS 6: SIN/COS + Hiperface	0		\bigcirc		\bigcirc	\bigcirc	\bigcirc
	10-01	Encoder Pulse	1~25000	600		\bigcirc		\bigcirc	\bigcirc	\bigcirc
	10-02	Encoder Input Type Setting	0: Disable 1: Phase A leads in a forward run command and phase B leads in a reverse run command 2: Phase B leads in a forward run command and phase A leads in a reverse run command 3: Phase A is a pulse input and phase B is a direction input. (low input=reverse direction, high input=forward direction) 4: Phase A is a pulse input and phase B is a direction input. (low input=forward direction, high input=reverse direction) 5: Single-phase input	0		\bigcirc		\bigcirc	\bigcirc	\bigcirc
	10-03	Encoder Feedback Fault Treatment (PGF1, PGF2)	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and stop operation	2		\bigcirc		\bigcirc	\bigcirc	\bigcirc
	10-04	Detection Time for Encoder Feedback Fault	0.0~10.0sec.	1.0		\bigcirc		\bigcirc	\bigcirc	\bigcirc
	10-05	Encoder Stall Level (PGF3)	0~120\% (0: Disable)	115		\bigcirc	\bigcirc	\bigcirc		\bigcirc
	10-06	Encoder Stall Detection Time	0.0~2.0sec.	0.1		\bigcirc	\bigcirc	\bigcirc		\bigcirc
	10-07	$\begin{aligned} & \text { Encoder Slip Range } \\ & \text { (PGF4) } \end{aligned}$	0~50\% (0: Disable)	50		\bigcirc	\bigcirc	\bigcirc		\bigcirc
	10-08	Encoder Slip Detection Time	0.0~10.0sec.	0.5		\bigcirc	\bigcirc	\bigcirc		\bigcirc
	10-09	Encoder Stall and Slip Error Treatment	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2		\bigcirc	\bigcirc	\bigcirc		\bigcirc
	10-10	Mode Selection for UVW Input	0 : Z signal is at the falling edge of U-phase 1: Z signal is at the rising edge of U-phase	0		\bigcirc		\bigcirc	\bigcirc	\bigcirc
	10-11	ASR (Auto Speed Regulation) Control (P) of Zero Speed	0.0~500.0\%	100.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	10-12	ASR (Auto Speed Regulation) Control (I) of Zero Speed	0.000~10.000sec.	0.100	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	10-13	ASR (Auto Speed Regulation) Control (P) 1	0.0~500.0\%	100.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	10-14	ASR (Auto Speed Regulation) Control (I) 1	0.000~10.000sec.	0.100	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	10-15	ASR (Auto Speed Regulation) Control (P) 2	0.0~500.0\%	100.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	10-16	ASR (Auto Speed	0.000~10.000sec.	0.100	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc

		Regulation) Control (1) 2								
N	10-17	ASR 1/ASR2 Switch Frequency	$0.00 \sim 400.00 \mathrm{~Hz}$ (0: Disable)	7.00	O	\bigcirc	O	\bigcirc		\bigcirc
N	10-18	ASR Primary Low Pass Filter Gain	0.000~0.350sec.	0.008	\bigcirc	O	O	\bigcirc		\bigcirc
N	10-19	Zero Speed Gain (P)	0~655.00\%	80.00						\bigcirc
N	10-20	Zero Speed/ASR1 Width Adjustment	0.00~400.00Hz	5.00		\bigcirc		\bigcirc		\bigcirc
N	10-21	ASR1/ASR2 Width Adjustment	$0.00 \sim 400.00 \mathrm{~Hz}$	5.00		\bigcirc		\bigcirc		\bigcirc
N	10-22	Zero speed Position Holding Time	0.000~65.535s	0.250						\bigcirc
N	10-23	Filter Time at Zero Speed	0.000~65.535s	0.004						\bigcirc
N	10-24	Time for Executing Zero Speed	0: after the brake release set in Pr.02-29 1: after the brake signal input (Pr.02-01~02-08 is set to 42)	0						\bigcirc
N	10-25	Elevator Leveling (Zero Speed Gain P)	0~1000.0\%	100.0	O	\bigcirc	O	\bigcirc		\bigcirc
N	10-26	Elevator Leveling (Zero Speed Integral I)	0~10.000sec.	0.100	\bigcirc	\bigcirc	O	\bigcirc		\bigcirc
N	10-27	Elevator Starts (Zero Speed Gain P)	0~1000.0\%	100.0	\bigcirc	\bigcirc	O	\bigcirc		\bigcirc
N	10-28	Elevator Starts (Zero Speed Integral I)	$0 \sim 10.000 \mathrm{sec}$.	0.100	\bigcirc	O	O	\bigcirc		\bigcirc
	10-29	Setting of PG card frequency division output	0~32	0		\bigcirc		\bigcirc	\bigcirc	\bigcirc
N	10-30	Setting of PG card frequency division output	0x00~0x02	0		\bigcirc		\bigcirc	\bigcirc	\bigcirc

11 Advanced Parameters

	Pr.	Explanation	Setting Range	Factory Setting	$\stackrel{\text { ¢ }}{ }$	$\begin{aligned} & 0 \\ & 0 \\ & i \end{aligned}$	u	$\begin{aligned} & \text { O } \\ & \text { U } \\ & \text { O } \\ & \text { u } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdash \end{aligned}$	\sum 0 0 U
	11-00	System Control	Bit 0=0: no function Bit 0=1: ASR Auto tuning, PDFF enable Bit $7=0$: no function Bit 7=1: When position control is enabled, it doesn't need to set Pr.07-02 (DC Brake Current Level) Bit 15=0: when power is applied, it will detect the position of magnetic pole again Bit 15=1: when power is applied, it will start from the magnetic pole position of previous power failure	0				\bigcirc		\bigcirc
N	11-01	Elevator Speed	$0.10 \sim 4.00 \mathrm{~m} / \mathrm{s}$	1				\bigcirc		\bigcirc
N	11-02	Sheave Diameter	100~2000mm	400				\bigcirc		\bigcirc
N	11-03	Mechanical Gear Ratio	1~100	1				\bigcirc		\bigcirc
N	11-04	Suspension Ratio	$\begin{aligned} & 0=1: 1 \\ & 1=2: 1 \end{aligned}$	1				\bigcirc		\bigcirc
N	11-05	Inertial Ratio	1~300\%	40				\bigcirc		\bigcirc
N	11-06	Zero-speed Bandwidth	0~40Hz	10				\bigcirc		\bigcirc
N	11-07	Low-speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$	10				\bigcirc		\bigcirc
N	11-08	High-speed Bandwidth	$0 \sim 40 \mathrm{~Hz}$	10				\bigcirc		\bigcirc
N	11-09	PDFF Gain Value	0~200\%	30				\bigcirc		\bigcirc
N	11-10	Gain for Speed Feed Forward	0~500	0				\bigcirc		\bigcirc
N	11-11	Notch Filter Depth	0~20db	0				\bigcirc		\bigcirc
N	11-12	Notch Filter Frequency	0.00~200.00Hz	0.00				\bigcirc		\bigcirc
N	11-13	Low-pass Filter Time of Keypad Display	0.001~65.535s	0.500	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	11-14	Motor Current at Accel.	50~200\%	150						\bigcirc
N	11-15	Elevator Acceleration	$0.20 \sim 2.00 \mathrm{~m} / \mathrm{s}^{2}$	0.75						\bigcirc
	11-16	Reserved	0X0000~0XFFFF	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	11--17	Reserved	Read Only	\#.\#\#	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	11-18	Reserved	0X0000~0XFFFF	\#.\#\#	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

12 User Defined Parameters

User-defined Parameters with range from Group 00 to Group 11

	Pr.	Explanation (Default Function)	Address	Factory setting	$\stackrel{1}{>}$	$\stackrel{0}{0}$	い	O	O	\sum 0 0 0 U
N	12-00	Present Fault Record	0610	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-01	Present Fault Time of Motor Operation (min.)	0620	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-02	Present Fault Time of Motor Operation (day)	0621	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-03	Frequency Command at Present Fault	2120	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-04	Output Frequency at Preset Fault	2121	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-05	Output Current at Present Fault	2122	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-06	Motor Frequency at Present Fault	2123	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-07	Output Voltage at Present Fault	2124	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-08	DC-Bus Voltage at Present Fault	2125	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-09	Output Power at Present Fault	2126	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-10	Output Torque at Present Fault	2127	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-11	IGBT Temperature of Power Module at Present Fault	2128	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-12	Multi-function Terminal Input Status at Present Fault	2129	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-13	Multi-function Terminal Output Status at Present Fault	212A	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-14	Drive Status at Present Fault	212B	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-15	Second Most Recent Fault Record	0611	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-16	Second Most Recent Fault Time of Motor Operation (min.)	0622	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-17	Second Most Recent Fault Time of Motor Operation (day)	0623	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-18	Third Most Recent Fault Record	0612	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-19	Third Most Recent Fault Time of Motor Operation (min.)	0624	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-20	Third Most Recent Fault Time of Motor Operation (day)	0625	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-21	Fourth Most Recent Fault Record	0613	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-22	Fourth Most Recent Fault Time of Motor Operation (min.)	0626	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-23	Fourth Most Recent Fault Time of Motor Operation (day)	0627	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-24	Fifth Most Recent Fault Record	0614	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-25	Fifth Most Recent Fault Time of Motor Operation (min.)	0628	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
N	12-26	Fifth Most Recent Fault Time of Motor Operation (day)	0629	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-27	Sixth Most Recent Fault Record	0615	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-28	Sixth Most Recent Fault Time of Motor Operation (min.)	062A	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-29	Sixth Most Recent Fault Time of Motor Operation (day)	062B	Read Only	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N	12-30	No factory setting								
N	12-31	No factory setting								

13 View User-defind Parameters

Pr.	Explanation	Setting Range	Factory Setting	>	$\stackrel{0}{0}$	い	O	O	\sum 0 0 0 U
$\begin{gathered} 13-00 \\ \underset{13-31}{ } \end{gathered}$	View User-defined Parameters	Pr00-00~ Pr11-17	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

[^0]: *Assumes operation at the rated output. Input current rating varies depending on the power supply, input reactor, wiring connections and power supply impedance.

